Skip to main content

Advertisement

Log in

Ferruginous microstromatolites related to Middle Jurassic condensed sequences and hardgrounds (Bucegi Mountains, Southern Carpathians, Romania)

  • Original Paper
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Integrated analyses of ferruginous laminated crusts and macro-oncoids associated with Middle Jurassic (Bathonian-Callovian) hardgrounds and condensed horizons cropping out in the Bucegi Mountains (Southern Carpathians) allowed an assessment of their microbial origin and the paleoenvironmental context of their genesis. The ferruginous microstromatolites reveal different morphological types (or macrofabrics): ferruginous microstromatolites representing the hardgrounds crusts, ferruginous endostromatolites and oncoidal ferruginous microstromatolites. The last are associated with ooidal bioclastic grainstone, ooidal bioclastic grainstone-packstone, bioclastic ooidal packstone-grainstone, oncoidal floatstone and rudstone, stromatolitic bindstone, bioclastic wackestone-packstone and bioclastic wackestone microfacies. The host mineral of the ferruginous microbialites is calcite, but microbially induced iron oxyhydroxides (goethite and magnetite) prevail in the ferruginous laminae. Petrographical and scanning electron microscope (SEM) investigations revealed that these ferruginous microstromatolites were formed by the activity of microbial mats dominated by putative bacterial and fungal filaments. Locations with reduced or no sedimentation, in relatively deep-water, open-marine shelf environments, below fair-weather wave base or near to storm wave base, within the deep euphotic zone, were favorable for the hardening of the seafloor and the development of the microbial mats. The scarcity of an autochthonous benthic fauna and of burrowing, as well as the presence of framboidal pyrite suggest dysaerobic conditions. In such an environment, iron would have been in its soluble state (Fe2+) and the activity of micro-aerophylic iron-oxidizing bacteria appears to have been particularly intensive at the dysoxic-anoxic interface, inducing the precipitation of iron oxyhydroxides and the formation of diverse ferruginous microstromatolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Baele JM, Boulvain F, De Jong J, Matielli N, Papier S, Préat A (2008) Iron microbial mats in Modern and Phanerozoic environments. In: Hoover RB, Levin GV, Rozanov AY, Davies PCW (eds) Instruments, methods, and missions for astrobiology XI. Proceedings of SPIE. doi:10.1117/12.801597

  • Bathurst RGC (1975) Carbonate sediments and their diagenesis. Dev in Sedimentol Elsevier Amst, vol 12, p 620

  • Beccaro P, Lazăr I (2007) Oxfordian and Callovian radiolarians from the Bucegi Massif and Piatra Craiului Mountains (Southern Carpathians, Romania). Geol Carpath 58(4):305–320

    Google Scholar 

  • Benz M, Brune A, Schink B (1998) Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch Microbiol 169:159–165

    Article  Google Scholar 

  • Böhm F, Brachert TC (1993) Deep-water stromatolites and Frutexites Maslov from the Early and Middle Jurassic of S-Germany and Austria. Facies 28:145–168. doi:10.1007/BF02539734

    Article  Google Scholar 

  • Boulvain F, De Ridder C, Mamet B, Preat A, Gillan D (2001) Iron microbial communities in Belgian Frasnian carbonate mounds. Facies 44:47–59. doi:10.1007/BF02668166

    Article  Google Scholar 

  • Brigaud B, Durlet C, Deconinck JF, Vincent B, Thierry J, Trouiller A (2009) The origin and timing of multiphase cementation in carbonates: Impact of regional scale geodynamic events on the Middle Jurassic Limestones diagenesis (Paris Basin, France). Sediment Geol 222:161–180. doi:10.1016/j.sedgeo.2009.09.002

    Article  Google Scholar 

  • Burkhalter RM (1995) Ooidal ironstones and ferruginous microbialites: origin and relation to sequence stratigraphy (Aalenian and Bajocian, Swiss Jura Mountains). Sedimentol 42:57–74

    Article  Google Scholar 

  • Cantrell DL, Walker KR (1985) Depositional and diagenetic patterns, ancient oolite middle-Ordovician, Eastern Tennessee. J Sediment Petrol 55:518–531

    Google Scholar 

  • Carroll D (1958) Role of clay minerals in the transportation of iron. Geochim Cosmochim Acta 14:1–27

    Article  Google Scholar 

  • Cavalazzi B, Barbieri R, Ori GG (2007) Chemosynthetic microbialites in the Devonian carbonate mounds of Hamar Laghdad (Anti-Atlas, Morocco). Sediment Geol 200:73–88

    Article  Google Scholar 

  • Chaudhuri SK, Lack JG, Coates JD (2001) Biogenic magnetite formation through anaerobic bio-oxidation of Fe(II). Appl Environ Microbiol 67:2844–2848

    Article  Google Scholar 

  • Christ N, Immenhauser A, Amour F, Mutti M, Tomás S, Agar SM, Alway R, Kabiri L (2012) Characterization and interpretation of discontinuity surfaces in a Jurassic ramp setting (High Atlas, Morocco). Sedimentol 59(1):249–290. doi:10.1111/j.1365-3091.2011.01251.x

    Article  Google Scholar 

  • Corbari L, Cambon-Bonavita MA, Long GJ, Grandjean F, Zbinden M, Gaill F, Compère P (2008) Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata. Biogeosciences 5:1295–1310. doi:10.5194/bg-5-1295-2008

    Article  Google Scholar 

  • Cowen JP (1992) Morphological study of marine bacterial capsules, implications for marine aggregates. Mar Biol 114:85–95

    Google Scholar 

  • Défarge C, Trichet J, Jaunet AM, Robert M, Tribble J, Sansone FJ (1996) Texture of microbial sediments revealed by cryo-scanning electron microscopy. J Sediment Res 66:935–948

    Google Scholar 

  • Dietz RS (1941) Clay minerals in recent marine sediments. Univ Illinois Library, PhD thesis

  • Dragastan O (2010) Platforma carbonatică Getică. Stratigrafia Jurasicului şi Cretacicului inferior. Reconstituiri, paleogeografie, provincii şi biodiversitate. Ed Univ Bucureşti, 621 pp

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture In: Ham WE (ed) Classification of carbonate rocks. Am Assoc of Pet Geol Mem 1:108–121

  • Dupraz C, Strasser A (1999) Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains). Facies 40:101–130

    Article  Google Scholar 

  • Embry AF, Klovan JE (1971) A late Devonian reef tract on northeastern Banks Island, NWT. Can Pet Geol Bull 19:730–781

    Google Scholar 

  • Fabricius FH (1977) Origin of marine ooids and grapestones. Contrib Sedimentol 7:1–113

    Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Springer, Erlangen

    Google Scholar 

  • Föllmi KB, Delamette M, Ouwehand PJ (2011) Aptian to Cenomanian deeper-water hiatal stromatolites from the Northern Tethyan Margin. In: Tewari V, Seckbach J (eds) Stromatolites: interaction of microbes with sediments, cellular origin, life in extreme habitats and astrobiology. Springer, New York, pp 159–186

  • Fortin D, Châtellier X (2003) Biogenic iron-oxides. In: Pandalai SG (ed) Recent Res Dev in Mineral. Trivandrum, Kerala, India, pp 47–63

    Google Scholar 

  • Fortin D, Langley S (2005) Formation and occurrence of biogenic iron-rich minerals. Earth Sci Rev 72:1–19

    Article  Google Scholar 

  • Fürsich FT (1971) Hartgründe und Kondensation im Dogger von Calvados. N Jb Geol Paläont Abh 138:313–342

    Google Scholar 

  • Fürsich FT (1978) The influence of faunal condensation and mixing on the preservation of fossil benthic communities. Lethaia 11(3):243–250. doi:10.1111/j.1502-3931.1978.tb01231.x

    Article  Google Scholar 

  • Fürsich FT (1979) Genesis, environments, and ecology of Jurassic hardgrounds. N Jb Geol Paläont Abh 158:1–63

    Google Scholar 

  • Gatrall M, Jenkyns HC, Parsons CF (1972) Limonitic concretions from the European Jurassic, with particular reference to “Snuff-Boxes” of southern England. Sedimentol 18:9–103

    Article  Google Scholar 

  • Gómez JJ, Fernández-López S (1994) Condensation processes in shallow platforms. Sediment Geol 92:147–159

    Article  Google Scholar 

  • Gradziński M, Tyszka J, Uchman A, Jach R (2004) Large microbial foraminiferal oncoids from condensed Lower–Middle Jurassic deposits: a case study from the Tatra Mountains, Poland. Palaeogeogr Palaeoclimatol Palaeoecol 213:133–151. doi:10.1016/j.palaeo.2004.07.010

    Google Scholar 

  • Gruszczyński M (1986) Hardgrounds and ecological succession in the light of early diagenesis (Jurassic, Holy Cross Mts., Poland). Acta Palaeontol Pol 31:163–212

    Google Scholar 

  • Gygi RA (1981) Ooidal iron formations: marine or not marine? Eclogae Geol Helv 74:233–254

    Google Scholar 

  • Gygi RA (1992) Structure, pattern of distribution and palaeobathymetry of Late Jurassic microbialites (stromatolites and oncoids) in northern Switzerland. Eclogae Geol Helv 85:799–824

    Google Scholar 

  • Herbich FR (1888) Date paleontologice din Carpaţii Româneşti, I. Sistemul Cretacic din bazinul izvoarelor Dîmboviţei şi II. Sistemul Jurasic din bazinul izvoarelor Ialomiţei. Anu Birou Geol 1:178–339

    Google Scholar 

  • Hillgärtner H, Dupraz C, Hug W (2001) Microbially induced cementation of carbonate sands: are micritic meniscus cements good indicators of vadose diagenesis? Sedimentol 48:117–131

    Article  Google Scholar 

  • Iancu V, Berza T, Seghedi A, Gheuca I, Hann HP (2005) Alpine polyphase tectono-metamorphic evolution of the South Carpathians: a new overview. Tectonophys 410:337–365. doi:10.1016/j.tecto.2004.12.038

    Article  Google Scholar 

  • Immenhauser A, Schlager W, Burns SJ, Scott RW, Geel T, Lehmann J, Gaast SVD, Bolder-Schrijver LJA (2000) Origin and correlation of disconformity surfaces and marker beds, Nahr Umr Formation, Northern Oman. In: Alsharhan AS, Scott RW (eds) Middle East models of Jurassic/Cretaceous carbonate systems. Soc Econ Paleontol Mineral Spec Publ 69:209–225

  • James NP, Choquette PW (1990) Limestones—the sea—floor diagenetic environment. In: McIlreath IA, Morrow DW (eds) Diagenesis. Geosci Canada, Ottawa, pp 13–34

    Google Scholar 

  • Jekelius E (1916) A Brassói hegyek mezozóos faunàja. Földtani Intézet évkönyve 24(3):221–315

    Google Scholar 

  • Jenkyns HC (1971) The genesis of condensed sequences in the Tethyan Jurassic. Lethaia 4:327–352. doi:10.1111/j.1502-3931.1971.tb01928.x

    Article  Google Scholar 

  • Kaufman J, Cander HS, Daniels LD, Meyers WJ (1988) Calcite cement stratigraphy and cementation history of the Burlington-Keokuk Formation (Mississippian), Illinois and Missouri. J Sediment Petrol 58:312–326

    Google Scholar 

  • Kazmierczak J, Kempe S (2006) Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafoou Island, Tonga. Naturwissenschaften 93:119–126. doi:10.1007/s00114-005-0066-x

    Article  Google Scholar 

  • Lazăr I (2006) Jurasicul mediu din Bucegi-versantul vestic-Paleontologie şi paleoecologie. Ars Docendi, Bucureşti

    Google Scholar 

  • Leinfelder RR (2001) Jurassic reef ecosystems. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems, topics in geobiology series. Kluwer/Plenum Press, New York, pp 251–309

  • Leinfelder RR, Werner W, Nose M, Schmid DU, Krautter M, Laternser R, Takacs M, Hartmann D (1996) Paleoecology, growth parameters and dynamics of coral, sponge and microbolite reefs from the Late Jurassic. In: Reitner J et al (eds) Global and regional controls on biogenic sedimentation. I. Reef evolution. Res Rep, Göttinger, pp 227–248

  • Longman MW (1980) Carbonate diagenetic textures from nearsurface diagenetic environments. Am Assoc Pet Geol Bull 64:461–487

    Google Scholar 

  • Mamet B, Préat A (2003) Sur l’origine de la pigmentation de l’Ammonitico Rosso (Jurassique, région de Vérone, Italie du Nord). Rev de Micropaléontol 46(1):35–46

    Article  Google Scholar 

  • Mamet B, Préat A (2006) Iron-bacterial mediation in Phanerozoic red limestones: state of the art. Sediment Geol 185:147–157. doi:10.1016/j.sedgeo.2005.12.009

    Article  Google Scholar 

  • Mamet B, Préat A, De Ridder Ch (1997) Bacterial origin of the red pigmentation, Devonian Slivenec Limestone, Czech Republic. Facies 36:47–51

    Article  Google Scholar 

  • Marshall JD, Ashton M (1980) Isotopic and trace element evidence for submarine lithification of hardgrounds in the Jurassic of eastern England. Sedimentol 27:271–289

    Article  Google Scholar 

  • Martín-Algarra A, Sánchez-Navas A (1995) Phosphate stromatolites from condensed cephalopod limestones, Upper Jurassic, Southern Spain. Sedimentol 42:893–919

    Article  Google Scholar 

  • Marynowski L, Rakociński M, Zatoń M (2007) Middle Famennian (Late Devonian) interval with pyritized fauna from the Holy Cross Mountains (Poland): organic geochemistry and pyrite framboid diameter study. Geochem J 41:187–200

    Article  Google Scholar 

  • Maslov VP (1960) Stromatolites: their genesis, method of study, relationship to facies, and their geological importance based on examples from the Ordovician of the Siberian Platform. Acad Sci USSR Geol Inst Proc 41:188 pp (In Russian)

    Google Scholar 

  • Meyers J, Lohmann KC (1978) Microdolomite-rich syntaxial cements: proposed meteoric—marine mixing zone phreatic cements from Mississippian limestones, New Mexico. J Sediment Petrol 48:475–488

    Google Scholar 

  • Molina JM, Reolid M (2010) Costras ferromanganesíferas pelágicas inducidas por comunidades bentónicas microbianas en el límite Jurásico Medio-Superior (Subbético Externo, provincia de Córdoba). Geogaceta 48:59–62

    Google Scholar 

  • Monty C (1984) Cavity or fissure dwelling stromatolites (endostromatolites) from Belgian Devonian mud mounds (Extended abstract). Ann Soc Geol Belg 105:343–344

    Google Scholar 

  • Murgeanu G (1937) Sur une cordillère antésénonienne dans le géosynclinal du flysch carpatique. Inst Géol de Roumanie 21:69–85

    Google Scholar 

  • Murgeanu G, Patrulius D, Contescu L, Jipa D, Mihăilescu N, Panin N (1963) Stratigrafia şi sedimentogeneza terenurilor cretacice din partea internă a Curburii Carpaţilor. Geol Carpatho-Balkan Assoc Congr V Bucureşti 3(2):31–58

    Google Scholar 

  • Neagu T (1996) Middle-Jurassic (Lower Callovian) planktonic foraminifera from Tătarului Gorges–Bucegi Mountains. România. Rev Esp de Micropaleontol 28(3):5–10

    Google Scholar 

  • Neagu T, Manea I, Gavrilescu N (1983) Studiul microbiostratigrafic al Doggerului din versantul vestic al Masivului Bucegi-Pasul Strunguliţa. Bucureşti 27(2):122–127

    Google Scholar 

  • Olóriz F, Reolid M, Rodríguez-Tovar FJ (2003) A Late Jurassic carbonate ramp colonized by sponges and benthic microbial communities (External Prebetic, Southern Spain). Palaios 18:528–545

    Article  Google Scholar 

  • Palmer TJ, Wilson MA (1990) Growth of ferruginous oncoliths in the Bajocian (Middle Jurassic) of Europe. Terra Nova 2:142–147

    Article  Google Scholar 

  • Patrulius D (1957) Corelarea doggerului superior şi malmului din Carpaţii Orientali. Bul Ştiinţific al Acad Române 2:261–273

    Google Scholar 

  • Patrulius D (1969) Geologia Masivului Bucegi şi a Culoarului Dîmbovicioara. Ed Acad Repub Social Romania, Bucureşti, pp 321

  • Patrulius D, Popa E, Avram E, Baltreş A, Pop G, Iva M, Antonescu E, Dumitrică P, Iordan M (1980) Studiul petrologic şi biostratigrafic complex al formaţiunilor jurasice şi neocomiene din Carpaţii Româneşti şi Dobrogea în vederea evaluării potenţialului de resurse minerale. Sectorul Leaota-Braşov-Munţii Perşani. Raport IGG, Tema Nr. 47/1979

  • Popovici-Hatzeg V (1898) Étude géologique des environs de Câmpulung et de Sinaia (Roumanie). Paris, Carré et Naud, 220 pp

  • Popovici-Hatzeg V (1905) Les Céphalopodes du jurassique moyen du Mont Strunga (Massif de Bucegi, Roumanie). Mém de la Soc Géol de France Paléontol 35:5–27

    Google Scholar 

  • Préat A, Mamet B, Devleeschouwer X (1998) Sédimentologie du stratotype de la limite Frasnien-Famennien (Coumiac, Montagne Noire, France). Bull Soc Géol Fr 169(3):331–342

    Google Scholar 

  • Préat A, Mamet B, Bernard A, Gillan D (1999) Bacterial mediation, red matrices diagenesis, Devonian, Montagne Noire (southern France). Sediment Geol 126:223–242

    Article  Google Scholar 

  • Préat A, Mamet B, De Ridder C, Boulvain F, Gillan D (2000) Iron bacterial and fungal mats, Bajocian stratotype (Mid-Jurassic, northern Normandy, France). Sediment Geol 137:107–126

    Article  Google Scholar 

  • Préat A, Morano S, Loreau JL, Durlet C, Mamet B (2006) Petrography and biosedimentology of the Rosso Ammonitico Veronese (middle-upper Jurassic, north eastern Italy). Facies 52:265–278

    Article  Google Scholar 

  • Préat A, Mamet B, Di Stefano P, Martire L, Kolo K (2011a) Microbially induced Fe and Mn oxides in condensed pelagic sediments (Middle-Upper Jurassic, Western Sicily). Sediment Geol 237:179–188

    Article  Google Scholar 

  • Préat A, Delpomdor F, Kolo K, Gillan D, Prian JP (2011b) Stromatolites and cyanobacterial mats in peritidal evaporative environments in the Neoproterozoic of Bas-Congo (Democratic Republic of Congo) and South Gabon. In: Tewari V, Seckbach J (eds) Stromatolites: interaction of microbes with sediments, cellular origin, life in extreme habitats and astrobiology. Springer, New York, pp 43–63

  • Price NB (1976) Chemical diagenesis in sediments. In: Riley JP, Chester R (eds) Chemical oceanography. Academic Press, London, pp 1–51

    Google Scholar 

  • Rais P, Louis-Schmid B, Bernasconi SM, Weissert H (2007) Paleoceanographic and paleoclimatic reorganization around the Middle-Late Jurassic transition. Palaeogeogr Palaeoclimatol Palaeoecol 251:527–546. doi:10.1016/j.palaeo.2007.05.008

    Article  Google Scholar 

  • Redlich K (1896) Geologische studien in Rumanien, II. Verh der kk Geologische Reichs Anst Wien, pp 77–83

  • Reolid M, Molina JM (2010) Serpulid-Frutexites assemblage from shadow-cryptic environments in Jurassic marine caves, Betic Cordillera, southern Spain. Palaios 25:468–474. doi:10.2110/palo.2009.p09-150r

    Article  Google Scholar 

  • Reolid M, Nieto LM (2010) Jurassic Fe–Mn macro-oncoids from pelagic swells of the external subbetic (Spain): evidences of microbial origin. Geologica Acta 8:151–168. doi:10.1344/105.000001525

    Google Scholar 

  • Reolid M, Gaillard C, Olóriz F, Rodriguez-Tovar FJ (2005) Microbial encrustation from the Middle Oxfordian-earliest Kimmeridgian lithofacies in the Prebetic Zone (Betic Cordillera, southern Spain): characterization, distribution and controlling factors. Facies 50:529–543

    Article  Google Scholar 

  • Reolid M, Abad I, Martín-García JM (2008) Palaeoenvironmental implications of ferruginous deposits related to a Middle-Upper Jurassic discontinuity (Prebetic Zone, Betic Cordillera, Southern Spain). Sediment Geol 203:1–16. doi:10.1016/j.sedgeo.2007.10.001

    Article  Google Scholar 

  • Reolid M, El Kadiri K, Abad I, Olóriz F, Jiménez-Millán J (2011) Jurassic microbial communities in hydrothermal manganese crust of the Rifian Calcareous Chain, Northern Morocco. Sediment Geol 233:159–172

    Article  Google Scholar 

  • Riding R (1975) Girvanella and other algae as depth indicators. Lethaia 8(2):173–179. doi:10.1111/j.1502-3931.1975.tb01310.x

    Article  Google Scholar 

  • Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous Algae and Stromatolites. Springer, Berlin, pp 21–51

    Chapter  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentol 47:179–214. doi:10.1046/j.1365-3091.2000.00003.x

    Article  Google Scholar 

  • Sandoval J, Checa A (2002) Taphonomy of cephalopod concentrations in the Jurassic of the Subbetic (Southern Spain). In: De Renzi M et al (eds) Current topics on taphonomy and fossilization. Valencia, Ayuntamiento de Valencia, pp 223–230

  • Săndulescu M (1984) Geotectonica României. Ed Tehnică, Bucureşti, 336 pp

  • Săndulescu M (1994) Overview on Romanian geology. Rom J Tecton Reg Geol 75:3–15

    Google Scholar 

  • Schwertmann U, Murad E (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner 31:277–284

    Article  Google Scholar 

  • Simionescu I (1899) Studii geologice şi paleontologice din Carpaţii sudici, III. Fauna calloviană din Valea Lupului (Rucăr). Acad Rom Publ Fond Vasile Adamachi 3:42 pp

    Google Scholar 

  • Simionescu I (1905) Studii geologice şi paleontologice din Carpaţii Sudici, IV. Fauna jurasică din Bucegi. Acad Rom Publ Fond Vasile Adamachi 13:223–263

    Google Scholar 

  • Straub KL, Benz M, Schink B (2001) Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol 34:181–186

    Article  Google Scholar 

  • Tucker ME (1991) Sedimentary petrology. An introduction to the origin of sedimentary rocks (second edition). Blackwell, London

  • Walker KR, Jernigan DG, Weber LJ (1990) Petrographic criteria for the recognition of marine, syntaxial overgrowths, and their distribution in geologic time. Carbonates Evaporates 5(2):141–152. doi:10.1007/BF03174845

    Article  Google Scholar 

  • Wallace MW, Keays RR, Gostin VA (1991) Stromatolitic iron oxides: evidence that sea-level changes can cause sedimentary iridium anomalies. Geol 19:551–554

    Article  Google Scholar 

  • Winklhofer M, Petersen N (2006) Paleomagnetism and magnetic bacteria. Microbiol Monogr 3:255–273. doi:10.1007/7171_046

    Article  Google Scholar 

  • Zatoń M, Kremer B, Marynowski L, Wilson MA, Krawczyński W (2012) Middle Jurassic (Bathonian) encrusted oncoids from the Polish Jura, southern Poland. Facies 58:57–77. doi:10.1007/s10347-011-0273-1

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Professor Ioan Bucur for his contribution in identifying the microfauna, Dr. Jörn Peckmann for facilitating the stable isotopes analyses and scanning electron microscopy (SEM) at the Center for Marine Environmental Science (University of Bremen), Dr. Barbara Soare and Dr. Cristian Panaiotu for helping with XRD and XRF analyses. Csiki Zoltan is acknowledged for revision of the English of the manuscript. We would like also to acknowledge Professor Maurice Tucker and to the anonymous reviewers for their corrections, comments and suggestions that strongly improved the original manuscript. Mihaela Grădinaru acknowledges POSDRU/6/1.5/S/24/2008. This work was supported by CNCS –UEFISCSU, project 1922 PNII—IDEI 1003/2008-2011, to Iuliana Lazăr.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iuliana Lazăr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazăr, I., Grădinaru, M. & Petrescu, L. Ferruginous microstromatolites related to Middle Jurassic condensed sequences and hardgrounds (Bucegi Mountains, Southern Carpathians, Romania). Facies 59, 359–390 (2013). https://doi.org/10.1007/s10347-012-0313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-012-0313-5

Keywords

Navigation