Skip to main content
Log in

A numerical model of debris flows with the Voellmy model over a real terrain

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

In this paper, a depth-averaged numerical model is proposed to simulate the propagation of debris flows. To understand the dynamical features of debris flows, the granular-liquid mixture model is employed, where the resistance of liquid constituent consisting of water and fine particles is described by Herschel-Bulkley rheology, and the resistance of granular constituent involving the coarse particles is formulated by the Voellmy model. An Eulerian leapfrog finite difference scheme is employed to numerically solve the governing equations of debris flows. Several idealized dam break problems are numerically implemented to test the accuracy and stability of the numerical scheme, and good agreement with the analytical solutions is found. Furthermore, the experiment carried out by Iverson (2010) is numerically implemented in this study to validate the proposed model, and the results are in good agreement. Then, a typical debris flow in Tianmo gully in Tibet, China, is numerically analyzed based on the proposed model. The results show that several details of the motion of debris flows over a real terrain can be accurately predicted by the proposed model. The comparisons between the basal Coulomb friction model and the Voellmy model show that the mobility of debris flows can be overestimated when only the Coulomb friction model is employed. An analysis based on the unsteady motion of a uniform mass indicates that Voellmy resistance can rescue the issue in regard to the absence of resistance of the granular component due to fully liquefied states. Finally, the influence of the rheology of liquid slurry on the motion of debris flows is analyzed, and the results demonstrate that the basal resistances caused by the liquid slurry were very small relative to the basal resistances caused by granular constituent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.  5
Fig.  6
Fig.  7
Fig. 8
Fig.  9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • An H, Ouyang C, Wang F et al (2022) Comprehensive analysis and numerical simulation of a large debris flow in the Meilong catchment, China. Eng Geol 106546

  • Ancey C (2002) Debris flows and related phenomena. Geomorphological Fluid Mechanics 528–547

  • Ancey C (2006) Plasticity and geophysical flows: a review. J Nonnewton Fluid Mech 142:4–35

    Article  Google Scholar 

  • Ancey C (2007) Plasticity and geophysical flows: a review. J Nonnewton Fluid Mech 142(1–3):4–35

    Article  Google Scholar 

  • Baker JL, Johnson CG, Gray J (2016) Segregation-induced finger formation in granular free-surface flows. J Fluid Mech 809:168–212

    Article  Google Scholar 

  • Bartelt P, Bühler Y, Buser O (2012) Modeling mass-dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches. J Geophys Res Earth Surf 117(F1):1–28

    Article  Google Scholar 

  • Bouchut F, Fernandez-Nieto ED, Mangeney A et al (2015) A two-phase shallow debris flow model with energy balance. ESAIM: Math Model Numer Anal 49(1):101–140

  • Chen L, Yu B, Huang H et al (2021) Characteristics of debris flow source evolution in Tianmo Gully. Tibet Geological Bulletin of China 40(12):2089–2097 (in Chinese with English abstract)

    Google Scholar 

  • Cho Y (1995) Numerical simulations of tsunami propagation and run-up. Ph.D. Dissertation Cornell University

  • Cho Y, Yoon S (1998) A modified leap-frog scheme for linear shallow-water equations. Coast Eng J 40(2):191–205

    Article  Google Scholar 

  • Coussot P (1997) Mudflow rheology and dynamics, IAHR Monograph Series. Balkema

  • Cui KF, Zhou GG, Jing L (2021) Viscous effects on the particle size segregation in geophysical mass flows: insights from immersed granular shear flow simulations. J Geophys Res Solid Earth 126(8): e2021JB022274

  • Cui P, Su FH, Zou Q, Chen NS, Zhang YL (2015) Risk assessment and disaster reduction strategies for mountainous and meteorological hazards in Tibetan plateau. Chin Sci Bull 60(32):3067–3077

    Article  Google Scholar 

  • Cui P, Tang J, Lin P (2016) Study and research progress of resistance character of debris-flow. J Sichuan Univ (Eng Sci Ed) 48(3):1–11. (in Chinese with English abstract)

  • Delannay R, Valance A, Mangeney A et al (2017) Granular and particle-laden flows: from laboratory experiments to field observations. J Phys D Appl Phys 50(5):053001

    Article  Google Scholar 

  • Deng MF, Chen NS, Liu M (2017) Meteorological factors driving glacial till variation and the associated periglacial debris flows in Tianmo valley, south-eastern Tibetan Plateau. Nat Hazards Earth Syst Sci 17:345–356

    Article  Google Scholar 

  • Deng YX (1995) Process of accumulation and characteristics of glacial debris flow deposits transformed by moraine. Acta Sedimentol Sin 13(4):37–48

    Google Scholar 

  • Denlinger RP, Iverson RM (2001) Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental tests. J Geophys Res Solid Earth 106(B1):553–566

  • Egashira S, Miyamoto K, Itoh T (1997) Constitutive equations of debris flow and their applicability: 1st Intern. Conf on Debris-Flow Hazards Mitigation ASCE 1997:340–349

    Google Scholar 

  • Evans SG, Hungr O, Clague JJ (2001) Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada: implications for landslide hazard assessment on dissected volcanoes. Eng Geol 61:29–51

    Article  Google Scholar 

  • Fan RL, Zhang LM, Wang HJ (2018) Evolution of debris flow activities in Gaojiagou Ravine during 2008–2016 after the Wenchuan earthquake. Eng Geol 235:1–10

    Article  Google Scholar 

  • Gao B, Wang J, Zhang J, Chen L, Li Y (2018) Analysis of the development characteristics of typical glacial debris flow that has materials source of moraine and colluvial or slide deposits in the Purlung River (Bomi-Suotong). Sci Technol Eng 18(19):176–182

    Google Scholar 

  • Gao B, Zhang J, Wang J, Chen L, Yang D (2019) Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Tibet. Hydrogeol Eng Geol 46(5):144–153 (in Chinese with English abstract)

    Google Scholar 

  • Ge YG, Cui P, Su FH et al (2014) Case history of the disastrous debris flows of Tianmo watershed in Bomi County, Tibet, China: some mitigation suggestions. J Mt Sci 11(5):1253–1265

    Article  Google Scholar 

  • Gray J, Ancey C (2011) Multi-component particle-size segregation in shallow granular avalanches. J Fluid Mech 678:535–588

    Article  Google Scholar 

  • Guo J, Cui Y, Xu W, Yin Y, Li Y, Jin W (2022) Numerical investigation of the landslide-debris flow transformation process considering topographic and entrainment effects: a case study. Landslides 19:773–788

    Article  Google Scholar 

  • Han Z, Chen G, Li Y et al (2015) Numerical simulation of debris-flow behavior incorporating a dynamic method for estimating the entrainment. Eng Geol 190:52–64

    Article  Google Scholar 

  • Han Z, Su B, Li Y et al (2019) Numerical simulation of debris-flow behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model. Eng Geol 255:26–36

    Article  Google Scholar 

  • Hu W, Dong XJ, Xu Q et al (2016) Initiation processes for run-off generated debris flows in the Wenchuan earthquake area of China. Geomorphology 253:468–477

    Article  Google Scholar 

  • Huang X, Garcia MH (1998) A Herschel-Bulkley model for mud flow down a slope. J Fluid Mech 374:305–333

    Article  Google Scholar 

  • Hungr O, Evans SG, Hutchinson IN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238

    Article  Google Scholar 

  • Hungr O, Mcdougall S, Michael B (2005) Entrainment of material by debris flows. Debris-flow hazards and related phenomena Springer Berlin Heidelberg 135–158

  • Hutter K, Nohguchi Y (1990) Similarity solutions for a Voellmy model of snow avalanches with finite mass. Acta Mech 82(1):99–127

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  • Iverson RM (2014) Debris flows: behaviour and hazard assessment. Geol Today 30(1):15–20

    Article  Google Scholar 

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J Geophys Res Solid Earth 106(B1):537–552

    Article  Google Scholar 

  • Iverson RM, George DL (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc Royal Soc A: Math Phys Eng Sci 470(2170):20130819

  • Iverson RM, Logan M, LaHusen RG, Berti M (2010) The perfect debris flow? Aggregated results from 28 large-scale experiments. J Geophys Res 115:F03005

    Article  Google Scholar 

  • Iverson RM, Ouyang C (2015) Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory. Rev Geophys 53(1):27–58

    Article  Google Scholar 

  • Jiang R, Zhang L, Peng D et al (2021) The landslide hazard chain in the Tapovan of the Himalayas on 7 February 2021. Geophys Res Lett 48(17):e2021GL093723

  • Johnson CG, Kokelaar BP, Iverson RM et al (2012) Grain‐size segregation and levee formation in geophysical mass flows. J Geophys Res 117(F1)

  • Kean JW, McCoy SW, Tucker GE et al (2013) Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency. J Geophys Res 118(4):2190–2207

    Article  Google Scholar 

  • Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res 110(B12)

  • King G, Herman F, Guralnik B (2016) Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry. Science 353(6301):800–804

    Article  Google Scholar 

  • Lam C, Jefferis S (2014) Interpretation of viscometer test results for polymer support fluids. In Geotechnical Special Publication|Geotech Spec Publ (pp. 439–449). Am Soc Civ Eng. https://doi.org/10.1061/9780784413449.043

  • Lin P, Wu Y, Bai J, Lin Q (2011) A numerical study of dam-break flow and sediment transport from a quake lake. J Earthq Tsunami 5(5):401–428

    Article  Google Scholar 

  • Liu KF, Huang MC (2006) Numerical simulation of debris flow with application on hazard area mapping. Comput Geosci 10(2):221–240

    Article  Google Scholar 

  • Major JJ, Pierson TC (1992) Debris flow rheology: Experimental analysis of fine-grained slurries. Water Resour Res 28:841–857

    Article  Google Scholar 

  • Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5(1):127–142

    Article  Google Scholar 

  • Mei CC, Liu KF, Yuhi M (2001) Mud flow—slow and fast[M]. Geomorphological fluid mechanics. Springer, Berlin, Heidelberg, 548–577

  • Mergili M, Emmer A, Juřicová A, Cochachin A, Fischer JT, Huggel C, Pudasaini SP (2018) How well can we simulate complex hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the Santa Cruz valley (cordillera blanca, perú). Earth Surf Process Landform 43(7):1373–1389

    Article  Google Scholar 

  • Nishiguchi Y, Uchida T (2022) Long‐runout‐landslide‐induced debris flow: the role of fine sediment deposition processes in debris flow propagation. J Geophys Res Earth Surf 127(2):e2021JF006452

  • O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119(2):244–261

    Article  Google Scholar 

  • Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences 363(1832):1573–1601

    Article  Google Scholar 

  • Pudasaini SP (2012) A general two‐phase debris flow model. J Geophys Res Earth Surf 117(F3)

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19(1):47–77

    Article  Google Scholar 

  • Ritter A (1892) Die Fortpfanzung der Wasserwellen. Zeitschrift Des Verenines Deuscher Ingenieure 36(29):947–954 (in German)

    Google Scholar 

  • Saiduzzaman M, Ray S (2013) Comparison of numerical schemes for shallow water equation. Glob J Sci Front Res- Math Decisi Sci 13(4):1–19

    Google Scholar 

  • Sakai Y, Hotta N, Kaneko T et al (2019) Effects of grain-size composition on flow resistance of debris flows: behavior of fine sediment. J Hydraul Eng 145(5):06019004

    Article  Google Scholar 

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100(1):11–26

    Article  Google Scholar 

  • Stoker JJ (1957) Water waves. Interscience Publishers Wiley, New York, pp 331–341

    Google Scholar 

  • Sun W, Sun O (2011) A modified leapfrog scheme for shallow water equations. Comput Fluids 52:69–72

    Article  Google Scholar 

  • Takahashi T (2014) Debris flow mechanics, prediction and countermeasures, 2nd edn. Taylor & Francis, London

  • Tang C, Rengers N, Van Asch TW, Yang YH, Wang GF (2011) Triggering conditions and depostional characteristics of a disastrous debris flow event in Zhouqu city, Gansu Province, northwester China. Nat Hazards Earth Syst Sci 11:2903–2912

    Article  Google Scholar 

  • Tang J, Lin P, Cui P (2022) Depth-resolved numerical model of dam break mud flows with Herschel-Bulkley rheology. J Mt Sci 19(4):1001–1017

  • Uchida T, Nishiguchi Y, McArdell BW et al (2021) The role of the phase shift of fine particles on debris flow behavior: a numerical simulation for a debris flow in Illgraben Switzerland. Can Geotech J 58(1):23–34

    Article  Google Scholar 

  • Wang G, Sassa K (2003) Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Eng Geol 69(1–2):109–125

    Article  Google Scholar 

  • Wang Y, Zhan Q, Yan B (2014) Debris flow rheology and movement. Hunan Science & Technology press (in Chinese)

  • Wei R, Zeng Q, Davies T et al (2018) Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring. Eng Geol 233:172–182

    Article  Google Scholar 

  • Zhang Y, Lin P (2016) An improved SWE model for simulation of dam-break flows. Water Manag 169(6):260–274

    Google Scholar 

Download references

Funding

The authors received support from the National Natural Science Foundation of China (Grant No. 41941017 and U20A20112) and the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDY-SSW-DQC006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Appendix

Appendix

Numerical scheme

In this study, the Eulerian leapfrog finite difference scheme, which has been widely applied to simulate the evolution of flood (Cho et al. 1998; Lin et al. 2011; Sun et al. 2011; Zhang et al. 2016), was employed to numerically solve the governing Eqs. (1)–(3). The numerical scheme in this study has second-order accuracy for the temporal step and spacial grid (Cho 1995; Saiduzzaman and Ray 2013; Zhang et al. 2016). First, the equation of mass balance is discretized as follows:

$$\frac{{h}_{i,j}^{n+1/2}-{h}_{i,j}^{n-1/2}}{\Delta t}+\frac{{p}_{i+1/2,j}^{n}-{p}_{i-1/2,j}^{n}}{\Delta {x}_{i}}+\frac{{q}_{i,j+1/2}^{n}-{q}_{i,j-1/2}^{n}}{\Delta {y}_{j}}=0$$
(26)

where the superscript n represents the time level; the subscript (i, j) denotes the spatial node; Δt represents the time increment; Δxi and Δyj represent the grid cell sizes along the x- and y-directions, respectively; and hn+1/2 = (hn + hn+1)/2 represents the depth of flows at the n + 1/2-th time step in the center of the grid cells.

Second, the equations of momentum balance are numerically solved as formulated in Eqs. (A2) and (A3) at the n + 1-th time step in the right face and the upper face of the grid cell along the x- and y-directions, respectively.

$$\begin{array}{c}\frac{{p}_{i+1/2,j}^{n+1}-{p}_{i+1/2,j}^{n}}{\Delta t}+{\left[\frac{\partial }{\partial x}\left(\frac{{p}^{2}}{h}\right)+\frac{\partial }{\partial y}\left(\frac{pq}{h}\right)\right]}_{i+1/2,j}^{n}\\ =-g{h}_{i,j}^{n+1/2}\frac{(k{h}_{i+1,j}^{n+1/2}\text{+}{z}_{b}{}_{i+1,j}^{n+1/2})-(k{h}_{i,j}^{n+1/2}\text{+}{z}_{b}{}_{i,j}^{n+1/2})}{\Delta {x}_{i+1/2}}-{\left(\frac{{\tau }_{bx}}{\rho }\right)}_{i+1/2,j}^{n}\end{array}$$
(27)
$$\begin{array}{c}\frac{{q}_{i,j+1/2}^{n+1}-{q}_{i,j+1/2}^{n}}{\Delta t}+{\left[\frac{\partial }{\partial x}\left(\frac{pq}{h}\right)+\frac{\partial }{\partial y}\left(\frac{{q}^{2}}{h}\right)\right]}_{i,j+1/2}^{n}\\ =-g{h}_{i,j}^{n+1/2}\frac{(k{h}_{i,j+1}^{n+1/2}\text{+}{z}_{b}{}_{i,j+1}^{n+1/2})-(k{h}_{i,j}^{n+1/2}\text{+}{z}_{b}{}_{i,j}^{n+1/2})}{\Delta {y}_{i+1/2}}-{\left(\frac{{\tau }_{by}}{\rho }\right)}_{i,j+1/2}^{n}\end{array}$$
(28)

where the flux of momentums in this scheme is discretized by the upwind scheme as:

$${\left[\frac{\partial }{\partial x}\left(\frac{{p}^{2}}{h}\right)\right]}_{i+1/2,j}^{n}=\left\{\begin{array}{c}\frac{1}{\Delta {x}_{i}}\left[\frac{{({p}_{i+1/2,j}^{n})}^{2}}{{h}_{i+1/2,j}^{n}}-\frac{{({p}_{i-1/2,j}^{n})}^{2}}{{h}_{i-1/2,j}^{n}}\right]\qquad if\qquad{\ p}_{i+1/2,j}^{n}\ge 0\\ \frac{1}{\Delta {x}_{i}}\left[\frac{{({p}_{i+3/2,j}^{n})}^{2}}{{h}_{i+3/2,j}^{n}}-\frac{{({p}_{i+1/2,j}^{n})}^{2}}{{h}_{i+1/2,j}^{n}}\right]\qquad if\qquad {\ p}_{i+1/2,j}^{n}<0\end{array}\right.$$
(29)
$${\left[\frac{\partial }{\partial y}\left(\frac{pq}{h}\right)\right]}_{i+1/2,j}^{n}=\left\{\begin{array}{c}\frac{1}{\Delta {y}_{i-1/2}}\left[\frac{{(pq)}_{i+1/2,j}^{n}}{{h}_{i+1/2,j}^{n}}-\frac{{(pq)}_{i+1/2,j-1}^{n}}{{h}_{i+1/2,j-1}^{n}}\right]\qquad if\qquad {\ q}_{i+1/2,j}^{n}\ge 0\\ \frac{1}{\Delta {y}_{i+1/2}}\left[\frac{{(pq)}_{i+1/2,j+1}^{n}}{{h}_{i+1/2,j+1}^{n}}-\frac{{(pq)}_{i+1/2,j}^{n}}{{h}_{i+1/2,j}^{n}}\right]\qquad if\qquad {\ q}_{i+1/2,j}^{n}<0\end{array}\right.$$
(30)
$${\left[\frac{\partial }{\partial y}\left(\frac{{q}^{2}}{h}\right)\right]}_{i+1/2,j}^{n}=\left\{\begin{array}{c}\frac{1}{\Delta {y}_{j}}\left[\frac{{({q}_{i,j+1/2}^{n})}^{2}}{{h}_{i,j+1/2}^{n}}-\frac{{({q}_{i,j-1/2}^{n})}^{2}}{{h}_{i,j-1/2}^{n}}\right]\qquad if\qquad {\ q}_{i,j+1/2}^{n}\ge 0\\ \frac{1}{\Delta {y}_{j}}\left[\frac{{({q}_{i,j+3/2}^{n})}^{2}}{{h}_{i,j+3/2}^{n}}-\frac{{({q}_{i,j+1/2}^{n})}^{2}}{{h}_{i,j+1/2}^{n}}\right]\qquad if\qquad {\ q}_{i+1/2,j}^{n}<0\end{array}\right.$$
(31)
$${\left[\frac{\partial }{\partial x}\left(\frac{pq}{h}\right)\right]}_{i+1/2,j}^{n}=\left\{\begin{array}{c}\frac{1}{\Delta {x}_{i-1/2}}\left[\frac{{(pq)}_{i+1/2,j}^{n}}{{h}_{i+1/2,j}^{n}}-\frac{{(pq)}_{i-1/2,j-1}^{n}}{{h}_{i+1/2,j-1}^{n}}\right]\qquad if\qquad {\ p}_{i+1/2,j}^{n}\ge 0\\ \frac{1}{\Delta {x}_{i+1/2}}\left[\frac{{(pq)}_{i+1/2,j+1}^{n}}{{h}_{i+1/2,j+1}^{n}}-\frac{{(pq)}_{i+1/2,j}^{n}}{{h}_{i+1/2,j}^{n}}\right]\qquad if\qquad {\ p}_{i+1/2,j}^{n}\ge 0\end{array}\right.$$
(32)

The resistance term on the right-hand side is calculated by the semi-implicit scheme as follows:

$$\begin{array}{c}{\left({\tau }_{bx}\right)}_{i+1/2,j}^{n}={p}_{i+1/2,j}^{n+1}\{{\frac{\rho g{h}_{i+1/2,j}^{n}\mathrm{cos}{\theta }_{x}(1-\lambda )\mathrm{tan}\varphi }{\sqrt{{({p}_{i+1/2,j}^{n})}^{2}+{({q}_{i+1/2,j}^{n})}^{2}}}+\frac{{n}_{s}{\rho }_{s}g\sqrt{{({p}_{i+1/2,j}^{n})}^{2}+{({q}_{i+1/2,j}^{n})}^{2}}}{{({h}_{i+1/2,j}^{n})}^{2}{C}_{z}^{2}}} \\ +\frac{{n}_{f}{\tau }_{y}}{\sqrt{{({p}_{i+1/2,j}^{n})}^{2}+{({q}_{i+1/2,j}^{n})}^{2}}}+{n}_{f}{\eta }_{m}{(\frac{2m+1}{m})}^m\frac{{[{({p}_{i+1/2,j}^{n})}^{2}+{({q}_{i+1/2,j}^{n})}^{2}]}^{(m-1)/2}}{{({h}_{i+1/2,j}^{n})}^{2m}}\}\end{array}$$
(33)
$$\begin{array}{c}{\left({\tau }_{by}\right)}_{i,j+1/2}^{n}={q}_{i,j+1/2}^{n+1}\{{\frac{\rho g{h}_{i+1/2,j}^{n}\mathrm{cos}{\theta }_{x}(1-\lambda )\mathrm{tan}\varphi }{\sqrt{{({p}_{i+1/2,j}^{n})}^{2}+{({q}_{i+1/2,j}^{n})}^{2}}}+\frac{{n}_{s}{\rho }_{s}g\sqrt{{({p}_{i+1/2,j}^{n})}^{2}+{({q}_{i+1/2,j}^{n})}^{2}}}{{({h}_{i+1/2,j}^{n})}^{2}{C}_{z}^{2}}}\\+\frac{{n}_{f}{\tau }_{y}}{\sqrt{{({p}_{i+1/2,j}^{n})}^{2}+{({q}_{i+1/2,j}^{n})}^{2}}}+{n}_{f}{\eta }_{m}{(\frac{2m+1}{m})}^m\frac{{[{({p}_{i+1/2,j}^{n})}^{2}+{({q}_{i+1/2,j}^{n})}^{2}]}^{(m-1)/2}}{{({h}_{i+1/2,j}^{n})}^{2m}}\}\end{array}$$
(34)

Finally, the moving boundary treatment proposed by Cho (1995) was employed to deal with the moving boundary where the fluid feeds into or recedes from a dry land.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Cui, P., Wang, H. et al. A numerical model of debris flows with the Voellmy model over a real terrain. Landslides 20, 719–734 (2023). https://doi.org/10.1007/s10346-022-01987-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-022-01987-4

Keywords

Navigation