Skip to main content
Log in

A geometry-modelling method to estimate landslide volume from source area

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Knowledge of landslide volume is important to understand the extent of damages and evaluating methods of remediation. However, the volume of landslide is difficult to quantify due to its scale and challenges encountered in conventional surveying. Various studies using satellite and aerial images have been conducted to empirically relate volume (i.e., displaced mass) of a landslide to its area through a power-law. However, there are many existing empirical relationships, and the volume estimate may differ substantially. In this study, firstly it is demonstrated that the empirical area-volume power-law relationships could be rationalized by a geometrical and mathematical basis. The empirical relationships in the literature are shown to be bounded by the volumes of “idealized” landslides where the slip surface is either spherical or elliptical. Secondly, a geometry-modelling method is proposed to estimate the volume of a landslide from satellite and aerial images without the need for digital elevation models. Using this method, landslide volume can be expediently estimated, and it yields better accuracy than empirical area-volume power-law relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abele G (1974) Bergsturze in den Alpen. Ihre Verbreitung, Morphologie und Folgeerscheinungen. Wiss Alpenvereinshefte 25

  • Arsenault AM, Meigs AJ (2005) Contribution of deep-seated bedrock landslides to erosion of a glaciated basin in southern Alaska. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 30:1111–1125

    Article  Google Scholar 

  • Azzoni A, Chiesa S, Frassoni A, Govi M (1992) The Valpola landslide. Eng Geol 33:59–70

    Article  Google Scholar 

  • Baldi P, Bosman A, Chiocci FL, Marsella M, Romagnoli C, Sonnessa A (2008) Integrated subaerial-submarine morphological evolution of the Sciara del Fuoco after the 2002 landslide. The Stromboli Volcano: An Integrated Study of the 2002–2003 Eruption. American Geophysical Union, Geophysical Monograph Series 171–182

  • Behling R, Roessner S, Kaufmann H, Kleinschmit B (2014) Automated spatiotemporal landslide mapping over large areas using rapideye time series data. Remote Sens 6:8026–8055

    Article  Google Scholar 

  • Bonzanigo L, Eberhardt E, Loew S (2007) Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part I. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide. Can Geotech J 44:1157–1180

    Article  Google Scholar 

  • Bonzanigo L, Oppizzi P, Tornaghi M, Uggeri A (2006) Hydrodynamics and rheology: key factors in mechanisms of large landslides. In: Nadim, F., Pöttler, R., Einstein, H., Klapperich, H. Kramer, S. (eds), Geohazards, ECI Symposium Series, Volume P07 (2006). http://services.bepress.com/eci/geohazards/46

  • Borgatti L, Corsini A, Marcato G, Ronchetti F, Zabuski L (2008) Appraise the structural mitigation of landslide risk via numerical modelling: a case study from the northern Apennines (Italy). Georisk 2:141–160

    Google Scholar 

  • Bruce I, Cruden D (1977) The dynamics of the Hope slide. Bulletin of the International Association of Engineering Geology-Bulletin De L’association Internationale De Géologie De L’ingénieur 16:94–98

    Article  Google Scholar 

  • Brückl E, Brunner FK, Kraus K (2006) Kinematics of a deep-seated landslide derived from photogrammetric, GPS and geophysical data. Eng Geol 88:149–159

    Article  Google Scholar 

  • Catane SG, Cabria HB, Tomarong CP, Saturay RM, Zarco MAH, Pioquinto WC (2007) Catastrophic rockslide-debris avalanche at St. Bernard, southern Leyte, Philippines. Landslides 4:85–90

  • Cervi F, Ronchetti F, Martinelli G, Bogaard T, Corsini A (2012) Origin and assessment of deep groundwater inflow in the Ca’Lita landslide using hydrochemistry and in situ monitoring. Hydrol Earth Syst Sci 16:4205–4221

    Article  Google Scholar 

  • Chaytor JD, Uri S, Solow AR, Andrews BD (2009) Size distribution of submarine landslides along the US Atlantic margin. Mar Geol 264:16–27

    Article  Google Scholar 

  • Chen C, Dong J-J, Kuo C-Y, Hwang R-D, Li M-H, Lee C-T (2011) Reconstruction of the kinematics of landslide and debris flow through numerical modeling supported by multidisciplinary data: the 2009 Siaolin, Taiwan landslide. Sediment Transport-Flow and Morphological Processes 249–260

  • Chen G, Li Y, Zhang Y, Wu J (2012) Earthquake induced a chain disasters. Earthquake Research and Analysis-Statistical Studies, Observations and Planning. IntechOpen

  • Chen RF, Chan Y-CJ, Hu, J-C, Huang C, Chang K-J, Shih TY (2005) Large earthquake-triggered landslides and mountain belt erosion: the Tsaoling case, Taiwan. C R Geosci 337(13):1164–1172

  • Chen X-L, Liu C-G, Chang Z-F, Zhou Q (2016) The relationship between the slope angle and the landslide size derived from limit equilibrium simulations. Geomorphology 253:547–550

    Article  Google Scholar 

  • Chen Z, Zhang B, Han Y, Zuo Z, Zhang X (2014) Modeling accumulated volume of landslides using remote sensing and DTM data. Remote Sens 6:1514–1537

  • Chigira M (2009) September 2005 rain-induced catastrophic rockslides on slopes affected by deep-seated gravitational deformations, Kyushu, southern Japan. Eng Geol 108:1–15

    Article  Google Scholar 

  • Chigira M, Wang W-N, Furuya T, Kamai T (2003) Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan. Eng Geol 68(3–4):259–273

  • Chigira M, Wu X, Inokuchi T, Wang G (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 118:225–238

    Article  Google Scholar 

  • Clague JJ, Stead D (2012) Landslides: types, mechanisms and modeling. Cambridge University Press

    Book  Google Scholar 

  • Corominas J, Mavrouli J (2011) Living with landslide risk in Europe: assessment, effects of global change, and risk management strategies. Documento técnico, SafeLand. 7th Framework Programme Cooperation Theme 6

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet J-P, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263. https://doi.org/10.1007/s10064-013-0538-8

  • Corsini A, Borgatti L, Cervi F, Dahne A, Ronchetti F, Sterzai P (2009) Estimating mass-wasting processes in active earth slides–earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR. Nat Hazard 9:433–439

    Article  Google Scholar 

  • Corsini A, Pasuto A, Soldati M, Zannoni A (2005) Field monitoring of the Corvara landslide (Dolomites, Italy) and its relevance for hazard assessment. Geomorphology 66:149–165

    Article  Google Scholar 

  • Dai FC, Deng JH, Tham LG, Law KT, Lee CF (2004) A large landslide in Zigui County, Three Gorges area. Can Geotech J 41(6):1233–1240. https://doi.org/10.1139/t04-049

    Article  Google Scholar 

  • Dai F, Lee C (2001) Frequency–volume relation and prediction of rainfall-induced landslides. Eng Geol 59:253–266

    Article  Google Scholar 

  • Dai F, Xu C, Yao X, Xu L, Tu X, Gong Q (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J Asian Earth Sci 40:883–895

  • De Alteriis G, di Santolo AS, Chiocci F, Ramondini M, Violante C (2014) The case of Ischia underwater debris Avalanche (Italy, Tyrrhenian Sea) and Its High Mobility. Engineering Geology for Society and Territory–Volume 4. Springer, p 227–232

  • Derron M-H, Jaboyedoff M, Blikra L (2005) Preliminary assessment of rockslide and rockfall hazards using a DEM (Oppstadhornet, Norway). Nat Hazards Earth Syst Sci 5:285–292

    Article  Google Scholar 

  • Donnarumma A, Revellino P, Grelle G, Guadagno FM (2013) Slope angle as indicator parameter of landslide susceptibility in a geologically complex area. Landslide Science and Practice. Springer, p 425–433

  • Duman TY (2009) The largest landslide dam in Turkey: Tortum landslide. Eng Geol 104:66–79

    Article  Google Scholar 

  • Dykes AP, Bromhead EN (2018) The Vaiont landslide: re-assessment of the evidence leads to rejection of the consensus. Landslides 15:1815–1832. https://doi.org/10.1007/s10346-018-0996-y

    Article  Google Scholar 

  • Flentje P, Stirling D, Chowdhury RN (2007) Landslide susceptibility and hazard derived from a landslide inventory using data mining–an Australian case study

  • Guthrie R, Evans S (2004) Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surface Processes and Landforms: the Journal of the British Geomorphological Research Group 29:1321–1339

    Article  Google Scholar 

  • Guzzetti F, Ardizzone F, Cardinali M, Galli M, Reichenbach P, Rossi M (2008) Distribution of landslides in the Upper Tiber River basin, central Italy. Geomorphology 96:105–122

    Article  Google Scholar 

  • Guzzetti F, Ardizzone F, Cardinali M, Rossi M, Valigi D (2009) Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet Sci Lett 279:222–229

    Article  Google Scholar 

  • Hadley JB (1978) Madison Canyon rockslide, Montana, USA. Developments in Geotechnical Engineering. Elsevier, p 167–180

  • Haflidason H, Lien R, Sejrup HP, Forsberg CF, Bryn P (2005) The dating and morphometry of the Storegga Slide. Ormen Lange–an Integrated Study for Safe Field Development in the Storegga Submarine Area. Elsevier, p 123–136

  • Hancox G, Perrin N, Dellow G (2002) Recent studies of historical earthquake-induced landsliding, ground damage, and MM intensity in New Zealand. Bull N Z Soc Earthq Eng 35:59–95

  • Hewitt K (2002) Postglacial landform and sediment associations in a landslide-fragmented river system: the TransHimalayan Indus streams, central Asia. Landscapes of transition. Springer, p 63–91

  • Higgitt DL, Zhang X, Liu W, Tang Q, He X, Ferrant S (2014) Giant palaeo-landslide dammed the Yangtze river. Geosci Lett 1:6. https://doi.org/10.1186/2196-4092-1-6

  • Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25:231–234

    Article  Google Scholar 

  • Hu X, Tang H, Li C, Sun R (2012a) Stability of Huangtupo I# landslide under Three Gorges reservoir operation. Appl Mech Mater 170–173:1116–1123. https://doi.org/10.4028/www.scientific.net/AMM.170-173.1116

    Article  Google Scholar 

  • Hu X, Tang H, Li C, Sun R (2012b) Stability of Huangtupo riverside slumping mass II# under water level Fluctuation of three gorges reservoir. J Earth Sci 23(3):326–334. https://doi.org/10.1007/s12583-012-0259-0

  • Huang A-B, Lee J-T, Ho Y-T, Chiu Y-F, Cheng S-Y (2012a) Stability monitoring of rainfall-induced deep landslides through pore pressure profile measurements. Soils Found 52:737–747

    Article  Google Scholar 

  • Huang R, Pei X, Fan X, Zhang W, Li S, Li B (2012b) The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China. Landslides 9:131–142

    Article  Google Scholar 

  • Imaizumi F, Sidle RC (2007) Linkage of sediment supply and transport processes in Miyagawa Dam catchment, Japan. J Geophys Res 112(F03012). https://doi.org/10.1029/2006JF000495

  • Jaboyedoff M, Baillifard F, Couture R, Locat J, Locat P (2004) Toward preliminary hazard assessment using DEM topographic analysis and simple mechanical modeling by means of sloping local base level. Landslides evaluation and stabilization. Balkema, p 199–205

  • Jaboyedoff M, Derron M-H (2015) Methods to estimate the surfaces geometry and uncertainty of landslide failure surface. Engineering Geology for Society and Territory-Volume 2. Springer, p 339–343

  • Jaboyedoff M, Carrea D, Derron M-H, Oppikofer T, Penna IM, Rudaz B (2020) A review of methods used to estimate initial landslide failure surface depths and volumes. Eng Geol 267:105478. https://doi.org/10.1016/j.enggeo.2020.105478

    Article  Google Scholar 

  • Jeong S, Lee K, Kim J, Kim Y (2017) Analysis of rainfall-induced landslide on unsaturated soil slopes. Sustainability 9:1280

    Article  Google Scholar 

  • Jibson RW (2005) Landslide hazards at La Conchita, California.US Geological Survey Open-File Report 2005–1067. http://www.pubs.usgs.gov/of/2005/1067/508of05–067.html

  • John J (2010) Landslide occurances at Maierato, Italy. An Engineering Geological View

  • Johnson B (1978) Blackhawk landslide, California, USA. Developments in Geotechnical Engineering. Elsevier, p 481–504

  • Kaldaron-Asael B, Katz O, Aharonov E, Marco S (2008) Modeling the relation between area and volume of landslides. Report for Steering Comittee for Earthquakes, Jerusalem, Israel

  • Kasai M, Yamada T (2019) Topographic effects on frequency-size distribution of landslides triggered by the Hokkaido Eastern Iburi Earthquake in 2018. Earth Planets Space 71:1–12

    Article  Google Scholar 

  • Kirschbaum DB, Adler R, Hong Y, Hill S, Lerner-Lam A (2010) A global landslide catalog for hazard applications: method, results, and limitations. Nat Hazards 52:561–575

    Article  Google Scholar 

  • Kjekstad O, Highland L (2009) Economic and social impacts of landslides. Landslides–disaster risk reduction. Springer, p 573–587

  • Klar A, Aharonov E, Kalderon‐Asael B, Katz O (2011) Analytical and observational relations between landslide volume and surface area. J Geophys Res Earth Surf 116

  • Korup O (2005) Distribution of landslides in southwest New Zealand. Landslides 2:43–51

    Article  Google Scholar 

  • Korup O (2006) Effects of large deep‐seated landslides on hillslope morphology, western Southern Alps, New Zealand. J Geophys Res Earth Surf 111

  • Kuo Y-S, Tsai Y-J, Chen Y-S, Shieh C-L, Miyamoto K, Itoh T (2013) Movement of deep-seated rainfall-induced landslide at Hsiaolin Village during Typhoon Morakot. Landslides 10:191–202

    Article  Google Scholar 

  • Kuo C-Y, Tsai P-W, Tai Y-C, Chan Y-H, Chen R-F, Lin C-W (2020) Application assessments of using scarp boundary-fitted, volume constrained, smooth minimal surfaces as failure interfaces of deep-seated landslides. Front Earth Sci 8:211. https://doi.org/10.3389/feart.2020.00211

    Article  Google Scholar 

  • Laloui L, Tacher L, Moreni M, Bonnard C (2004) Hydro-mechanical modeling of crises of large landslides: application to the La Frasse landslide. 9th International Symp. on Landslides. Balkema, p 1103–1110

  • Larsen IJ, Montgomery DR, Korup O (2010) Landslide erosion controlled by hillslope material. Nat Geosci 3:247

    Article  Google Scholar 

  • Li W, Liu C, Hong Y, Saharia M, Sun W, Yao D, Chen W (2016) Rainstorm-induced shallow landslides process and evaluation–a case study from three hot spots, China. Geomat Nat Haz Risk 7:1908–1918

    Article  Google Scholar 

  • Lóczy D, Stankoviansky M, Kotarba A (2012) Recent landform evolution: the Carpatho-Balkan-Dinaric region. Springer Science & Business Media

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29:687–711

    Article  Google Scholar 

  • Marchesini I, Cencetti C, De Rosa P (2009) A preliminary method for the evaluation of the landslides volume at a regional scale. GeoInformatica 13:277–289

    Article  Google Scholar 

  • Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV (2010) Landslide volumetric analysis using Cartosat-1-derived DEMs. IEEE Geosci Remote Sens Lett 7:582–586

    Article  Google Scholar 

  • Martin Y, Rood K, Schwab JW, Church M (2002) Sediment transfer by shallow landsliding in the Queen Charlotte Islands, British Columbia. Can J Earth Sci 39:189–205

    Article  Google Scholar 

  • McAdoo B, Pratson L, Orange D (2000) Submarine landslide geomorphology, US continental slope. Mar Geol 169:103–136

    Article  Google Scholar 

  • Mergili M, Fellin W (2013) Three-dimensional modelling of rotational slope failures with GRASS GIS. Landslide Science and Practice. Springer, p 359–366

  • Michel J, Dario C, Marc-Henri D, Thierry O, Marina PI, Bejamin R (2020) A review of methods used to estimate initial landslide failure surface depths and volumes. Eng Geol 105478

  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173

    Article  Google Scholar 

  • Nicoletti PG, Parise M (2002) Seven landslide dams of old seismic origin in southeastern Sicily (Italy). Geomorphology 46:203–222

    Article  Google Scholar 

  • Nikolaeva E, Walter T, Shirzaei M, Zschau J (2014) Landslide observation and volume estimation in central Georgia based on L-band InSAR. Nat Hazard 14:675–688

    Article  Google Scholar 

  • Okura Y, Kitahara H, Kawanami A, Kurokawa U (2003) Topography and volume effects on travel distance of surface failure. Eng Geol 67:243–254

    Article  Google Scholar 

  • Oppikofer T (2012) Morphologic description of the Punta Cola rock avanlanche and associated minor rockslides caused by the 21 April 2007 Aysen Earthquake (Patagonia, Southern Chile). Rev Asoc Geol Argent 69:339–353

    Google Scholar 

  • Oppikofer T, Jaboyedoff M, Blikra L, Derron M-H, Metzger R (2009) Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Nat Hazard 9:1003–1019

    Article  Google Scholar 

  • Parker RN, Densmore AL, Rosser NJ, De Michele M, Li Y, Huang R, Whadcoat S, Petley DN (2011) Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat Geosci 4:449

    Article  Google Scholar 

  • Peart M (1991) The Kaiapit Landslide: events and mechanisms. Q J Eng GeolHydrogeol 24:399–411

    Article  Google Scholar 

  • Petley D (2009) On the occurrence of fatal landslides in 2008. EGU general assembly conference abstracts. 9030

  • Petley D, Rosser N, Karim D, Wali S, Ali N, Nasab N, Shaban K (2010) Non-seismic landslide hazards along the Himalayan Arc. CRC Press, London, UK, pp 143–154

    Google Scholar 

  • Philip H, Ritz J-F (1999) Gigantic paleolandslide associated with active faulting along the Bogd fault (Gobi-Altay, Mongolia). Geology 27(3):211–214. https://doi.org/10.1130/0091-7613(1999)027%3c0211:GPAWAF%3e2.3.CO;2

    Article  Google Scholar 

  • Pisani G, Castelli M, Scavia C (2010) Hydrogeological model and hydraulic behaviour of a large landslide in the Italian Western Alps. Nat Hazard 10:2391–2406

    Article  Google Scholar 

  • Randall JR (2012) Characterization of the Red bluff landslide, greater cascade landslide complex, Columbia River Gorge, Washington. MSc Thesis, Portland State University, USA

  • Ren Z, Zhang Z, Yin J, Dai F, Zhang H (2014) Morphogenic uncertainties of the 2008 Wenchuan Earthquake: Generating or reducing? J Earth Sci 25:668–675

    Article  Google Scholar 

  • Rice RM, Crobett ES, Bailey RG (1969) Soil slips related to vegetation, topography, and soil in Southern California. Water Resour Res 5(3):647–659. https://doi.org/10.1029/WR005i003p00647

    Article  Google Scholar 

  • Ronchetti F, Cervi F, Corsini A, Gorgoni C, Borgatti L, Piccinini L, Vincenzi V, Truffelli G (2009) Hydrogeologic characteristics of roto-translational slides in flysch rock masses

  • Schlögel R, Torgoev I, De Marneffe C, Havenith HB (2011) Evidence of a changing size–frequency distribution of landslides in the Kyrgyz Tien Shan, Central Asia. Earth Surf Proc Land 36:1658–1669

    Article  Google Scholar 

  • Schneider JF, Gruber FE, Mergili M (2013) Recent cases and geomorphic evidence of landslide-dammed lakes and related hazards in the mountains of Central Asia. Landslide science and practice. Springer, pp 57–64

  • Schuster RL (1996) Socioeconomic significance of landslides. Landslides: investigation and mitigation. Washington (DC): National Academy Press. Transportation Research Board Special Report 247:12–35

    Google Scholar 

  • Shoaei Z, Ghayoumian J (1998) Seimareh landslide, the largest complex slide in the world. In: Moore D, Hungr O (ed) Eighth International Congress of the International Association for Engineering Geology and the Environment, Proceedings, pp 1337–1342

  • Simonett DS (1967) Landslide distribution and earthquakes in the Bavani and Torricelli mountains, New Guinea. Landform Studies from Australia and New Guinea, pp 64–84

  • Song K, Wang F, Yi Q, Lu S (2018) Landslide deformation behavior influenced by water level fluctuations of the Three Gorges Reservoir (China). Eng Geol 247:58–68. https://doi.org/10.1016/j.enggeo.2018.10.020

    Article  Google Scholar 

  • Suganthi S, Srinivasan K (2010) Digital elevation model generation and its application in landslide studies using cartosat-1. Int J Geomat Geosci 1:41–50

    Google Scholar 

  • Tang H, Jia H, Hu X, Li D, Xiong C (2010) Characteristics of landslides induced by the great Wenchuan earthquake. J Earth Sci 21:104–113

    Article  Google Scholar 

  • Tang H, Li C, Hu X, Wang L, Wu Y, Le Y (2015) Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring. Landslides 12:511–521. https://doi.org/10.1007/s10346-014-0500-2

    Article  Google Scholar 

  • Tang H, Wasowski J, Juang CH (2019) Geohazards in the three Gorges Reservoir Area, China – lessons learned from decades of research. Eng Geol 261:105267. https://doi.org/10.1016/j.enggeo.2019.105267

    Article  Google Scholar 

  • Tariq S, Gomes C (2017) Landslide environment in Pakistan after the earthquake-2005: information revisited to develop safety guidelines for minimizing future impacts. J Geogr Nat Disasters 7:1–11

    Google Scholar 

  • Ten Brink US, Geist EL, Andrews BD (2006) Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys Res Lett 33:L11307. https://doi.org/10.1029/2006GL026125

    Article  Google Scholar 

  • Thiebes B, Tomelleri E, Mejia-Aguilar A, Rabanser M, Schlögel R, Mulas M, Corsini A (2016) Assessment of the 2006 to 2015 Corvara landslide evolution using a UAV-derived DSM and orthophoto. In: Aversa S, Cascini L, Picarelli L, Scavia C (eds) Landslides and Engineered Slopes. Experience, Theory and Practice – Proceedings of the 12th International Symposium on Landslides. Napoli, Italy, CRC Press, pp 1897–1902

  • Tsai F, Hwang J-H, Chen L-C, Lin T-H (2010) Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Nat Hazard 10:2179

    Article  Google Scholar 

  • Tseng CM, Lin CW, Stark CP, Liu JK, Fei LY, Hsieh YC (2013) Application of a multi-temporal, LiDAR-derived, digital terrain model in a landslide-volume estimation. Earth Surf Proc Land 38:1587–1601

    Google Scholar 

  • Tsou C-Y, Feng Z-Y, Chigira M (2011) Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology 127(3–4):166–178

    Article  Google Scholar 

  • Tsutsui K, Rokugawa S, Nakagawa H, Miyazaki S, Cheng C-T, Shiraishi T, Yang S-D (2007) Detection and volume estimation of large-scale landslides based on elevation-change analysis using DEMs extracted from high-resolution satellite stereo imagery. IEEE Trans Geosci Remote Sens 45:1681–1696

    Article  Google Scholar 

  • Urgeles R, Masson DG, Canals M, Watts AB, Le Bas T (1999) Recurrent large-scale landsliding on the west flank of La Palma, Canary Islands. J Geophys Res Solid Earth 104:25331–25348

    Article  Google Scholar 

  • Van Den Eeckhaut M, Verstraeten G, Poesen J (2007) Morphology and internal structure of a dormant landslide in a hilly area: the Collinabos landslide (Belgium). Geomorphology 89:258–273

    Article  Google Scholar 

  • Varnes DJ (1958) Landslide types and processes. Landslides and Engineering Practice 24:20–47

    Google Scholar 

  • von Ruette J, Lehmann P, Or D (2016) Linking rainfall-induced landslides with predictions of debris flow runout distances. Landslides 13:1097–1107

    Article  Google Scholar 

  • Wang T-S, Yu T-T, Lee S-T, Peng W-F, Lin W-L, Li P-L (2014a) MATLAB code to estimate landslide volume from single remote sensed image using genetic algorithm and imagery similarity measurement. Comput Geosci 70:238–247

    Article  Google Scholar 

  • Wang Z-Y, Lee JH, Melching CS (2014b) River dynamics and integrated river management. Springer Science & Business Media

  • Wartman J, Montgomery DR, Anderson SA, Keaton JR, Benoît J, dela Chapelle J, Gilbert R (2016) The 22 March 2014 Oso landslide, Washington, USA. Geomorphology 253:275–288

  • Weifeng HRPXZ, Biliang LSL (2009) Further examination on characteristics and formation mechanism of Daguangbao landslide. J Eng Geol 6

  • Whitehouse I (1983) Distribution of large rock avalanche deposits in the central Southern Alps, New Zealand. NZ J Geol Geophys 26:271–279

    Article  Google Scholar 

  • Wieczorek GF, Jakob M, Motyka RJ, Zirnheld SL, Craw P (2003) Preliminary assessment of landslide-induced wave hazards, Tidal Inlet, Glacier Bay National Park, Alaska. US Geological Survey Report, pp 2331–1258

  • Wieczorek GF, Snyder JB (2009) Monitoring slope movements. Geol Monit 245–271

  • Wu CH, Chen SC, Feng ZY (2014) Formation, failure, and consequences of the Xiaolin landslide dam, triggered by extreme rainfall from Typhoon Morakot, Taiwan. Landslides 11:357–367

    Article  Google Scholar 

  • Wu S, Wang T, Shi L, Sun P, Shi J, Li B, Xin P, Wang H (2010) Catastrophic landslides triggered by the 2008 Wenchuan Earthquake. China J Eng Geol 18:145–159

    Google Scholar 

  • Xiao SR, Liu DF, Jiang FXA, Jiang XL (2010) Geomechanical model experiment on Qianjiangping landslide in the Three Gorges Reservoir area. Chin J Rock Mech Eng 29:1023–1030

  • Xu Q, Fan X-M, Huang R-Q, Van Westen C (2009) Landslide dams triggered by the Wenchuan Earthquake, Sichuan Province, south west China. Bull Eng Geol Env 68:373–386

    Article  Google Scholar 

  • Zhang L, Xu Y, Huang R, Chang D (2011) Particle flow and segregation in a giant landslide event triggered by the 2008 Wenchuan earthquake, Sichuan, China. Nat Hazard 11:1153

    Article  Google Scholar 

  • Zhang Y, Chen G, Zheng L, Wu J, Zhuang X (2012) Effects of vertical seismic force on the initiation of the Da-guangbao landslide induced by the Wenchuan earthquake. The 8th Annual Conference of International Institute for Infrastruc‐ture, Renewal and Reconstruction, Kumamoto, Japan, pp 530–539

  • Zhang Z, Qian M, Wei S, Chen J (2018) Failure mechanism of the Qianjiangping slope in Three Gorges reservoir area, China. Geofluids 3503697:12. https://doi.org/10.1155/2018/3503697

Download references

Acknowledgements

The assistance of Benjamin Jie Min Lim in drafting the first manuscript is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eng-Choon Leong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Appendix. Details of landslide inventory

Appendix. Details of landslide inventory

Reference

Slide ID

L (km)

B (km)

Area (km2)

Volume (km3)

h/c

Wieczorek et al. (2003)

Tidal Inlet

1.23

0.30

0.293

0.0079

0.793

Brückl et al. (2006)

Gradenbach

1.85

1.16

1.680

0.1210

0.887

Bruce and Cruden (1977)

Hope slide

2.10

1.48

2.440

0.0477

0.994

Van Den Eeckhaut et al. (2007)

Collinabos

0.62

0.08

0.040

0.0004

0.652

Oppikofer (2012)

Main rockslide

0.79

0.70

0.430

0.0185

0.888

Secondary rockslide

0.28

0.15

0.032

0.0006

0.611

Weifeng and Biliang (2009), Xu et al. (2009), Chigira et al. (2010), Tang et al. (2010), Wu et al. (2010), Dai et al. (2011), Zhang et al. (2011), Chen et al. (2012), Clague and Stead (2012), Huang et al. (2012b), Zhang et al. (2012), Ren et al. (2014), Wang et al. (2014b)

Hongshigou (Sequence 9)

2.82

0.31

0.688

0.0150

0.860

Laoyingyan (Sequence 26)

0.45

1.00

0.353

0.0150

0.769

Niumiangou (Sequence 14)

2.58

0.20

0.407

0.0075

0.779

Daguangbao

4.20

2.21

7.274

0.7500

0.934

Donghekou

2.70

0.51

1.090

0.0300

0.915

Tangjiashan

1.08

0.67

0.572

0.0280

0.852

Wenjiagou

4.50

0.83

2.945

0.1500

0.891

Hu et al. (2012a, b), Song et al. (2018), Tang et al. (2015), Tang et al. (2019)

Garden spot

0.82

0.51

0.326

0.0140

0.806

Substation

1.10

0.44

0.381

0.0130

0.834

Slumping Mass I

0.77

0.54

0.325

0.0180

0.744

Slumping Mass II

0.60

0.68

0.320

0.0199

0.731

Dai et al. (2004), Xiao et al. (2010), Zhang et al. (2018)

Qingjiangping

1.21

0.55

0.520

0.0200

0.861

Higgitt et al. (2014)

Sichuan

13.54

6.27

66.690

3.7500

0.997

Philip and Ritz (1999)

Baga Bogd

14.84

15.54

181.140

50.0000

0.989

Martha et al. (2010)

Salna

0.26

0.16

0.032

0.0006

0.695

Peart (1991), Shoaei and Ghayoumian (1998)

Saidmarreh

16.00

13.13

165.000

30.0000

0.994

Azzoni et al. (1992)

Valpola

0.96

0.84

0.630

0.0340

0.880

Nicoletti and Parise (2002)

Dam no. 6 (Rio Amerillo)

1.20

0.84

0.790

0.0340

0.921

Corsini et al. (2005), Thiebes et al. (2016)

Corvara

3.50

0.91

2.500

0.0300

0.994

Baldi et al. (2008)

Sciara del Fuoco

1.07

0.45

0.380

0.0123

0.860

Borgatti et al. (2008), Corsini et al. (2009), Ronchetti et al. (2009), Cervi et al. (2012)

Ca’ Lita

2.70

0.47

1.000

0.0420

0.790

Dykes and Bromhead (2018)

Vaiont

1.87

1.63

2.400

0.2800

0.848

John. (2010)

Frontal region (Maierato landslide)

0.25

0.49

0.096

0.0020

0.820

Pisani et al. (2010)

Rosone

1.20

0.54

0.510

0.0220

0.826

Corominas and Mavrouli (2011)

Ruinon

0.52

0.59

0.240

0.0100

0.816

De Alteriis et al. (2014)

Ischia

6.86

2.73

14.720

1.5000

0.957

Tsutsui et al. (2007)

No. 7 Niigata—Higashi Takezawa

0.24

0.13

0.024

0.0004

0.583

No. 8 Niigata—Mt. Dainici

0.50

0.16

0.061

0.0012

0.627

No. 6 Dajia River

0.50

0.19

0.073

0.0014

0.720

No. 8 Dajia River

0.37

0.12

0.036

0.0006

0.577

Chigira (2009)

Koba

0.23

0.11

0.019

0.0003

0.664

Jibson (2005)

La Conchita

0.25

0.10

0.020

0.0002

0.762

Derron et al. (2005)

Oppstadhornet

0.80

0.78

0.490

0.0200

0.918

Oppikofer et al. (2009)

Aknes

1.01

0.69

0.550

0.0350

0.779

Schneider et al. (2013), Petley et al. (2010), Tariq and Gomes (2017)

Hattian Bala

2.36

0.65

1.200

0.0650

0.760

Attabad

1.92

1.01

1.530

0.0450

0.974

Catane et al. (2007)

Guinsaugon

3.09

0.58

1.400

0.0200

0.980

Lóczy et al. (2012)

Jovac

3.00

0.67

1.580

0.0800

0.836

Laloui et al. (2004), Jaboyedoff and Derron (2015)

La Frasse

2.00

0.64

1.000

0.0420

0.875

Bonzanigo et al. (2006, 2007)

Campo Vallemaggia

3.05

2.50

6.000

0.8000

0.916

Tsou et al. (2011), Kuo et al. (2013), Kuo et al. (2020)

HLIN (Typhoon Morakot)

1.26

0.63

0.628

0.0211

0.909

Chen et al. (2011), Wu et al. (2014), Kuo et al. (2020)

FID5 (Typhoon Morakot)

0.37

0.20

0.058

0.0012

0.750

Chigira et al. (2003), Chen et al. (2005)

Tsaoling (1999 Earthquake)

1.47

1.39

1.600

0.1250

0.906

Duman (2009)

Tortum

2.95

1.84

4.270

0.2200

0.975

Hadley (1978)

Madison Canyon

0.66

0.69

0.360

0.0214

0.786

Johnson (1978)

Blackhawk

7.00

2.43

13.380

0.3500

0.996

McAdoo et al. (2000)

New Jersey 39.08 -72.6

22.06

2.54

44.000

1.8000

0.991

Oregon 45.36, -125.47

10.00

6.11

48.000

2.8000

0.998

Wartman et al. (2016)

Oso

0.94

0.35

0.260

0.0076

0.813

Randall (2012)

Red Bluff—Upper Lobe

3.82

2.75

8.245

0.6500

0.974

Greenleaf Basin Rock Landslide

0.74

0.08

0.045

0.0004

0.711

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, EC., Cheng, Z. A geometry-modelling method to estimate landslide volume from source area. Landslides 19, 1971–1985 (2022). https://doi.org/10.1007/s10346-022-01864-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-022-01864-0

Keywords

Navigation