Skip to main content
Log in

Rapid characterisation of the extremely large landslide threatening the Rules Reservoir (Southern Spain)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

When an active landslide is first identified in an artificial reservoir, a comprehensive study has to be quickly conducted to analyse the possible hazard that it may represent to such a critical infrastructure. This paper presents the case of the El Arrecife Landslide, located in a slope of the Rules Reservoir (Southern Spain), as an example of geological and motion data integration for elaborating a preliminary hazard assessment. For this purpose, a field survey was carried out to define the kinematics of the landslide: translational in favour of a specific foliation set, and rotational at the foot of the landslide. A possible failure surface has been proposed, as well as an estimation of the volume of the landslide: 14.7 million m3. At the same time, remote sensing and geophysical techniques were applied to obtain historical displacement rates. A mean subsidence rate of the landslide around 2 cm/year was obtained by means of synthetic aperture radar interferometry (InSAR) and ground-penetrating radar (GPR) data, during the last 5 and 22 years, respectively. The structure-from-motion (SfM) technique provided a rate up to 26 cm/year during the last 14 years of a slag heap located within the foot of the landslide, due to compaction of the anthropical deposits. All of this collected information will be valuable to optimise the planning of future monitoring surveys (i.e. differential global positioning systems, inclinometers, ground drilling, and InSAR) that should be applied in order to prevent further damage on the reservoir and related infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alcántara-Ayala I, Domínguez-Morales L (2008) The San Juan de Grijalva catastrophic landslide, Chiapas, Mexico: lessons learnt. In: Casagli N, Fanti R, Tofani V (eds) Web Proceedings of the First World Landslide Forum. Tokyo, pp 96–99

  • Aldaya F, Díaz de Federico A, García-Dueñas V, Martínez-García E, Navarro-Vilá F, Puga E (1979) Lanjarón – Geological Map of Spain 1:50000. Geological Survey of Spain, Madrid

  • Azañón JM, Goffé B (1997) Ferro- and magnesiocarpholite assemblages as record of high-P, low-T metamorphism in the central Alpujárrides, Betic Cordillera (SE Spain). Eur J Mineral 9:1035–1051

    Article  Google Scholar 

  • Barnes G (2016) Soil mechanics: principles and practice. Macmillan International Higher Education, London

    Google Scholar 

  • Barra A, Solari L, Béjar-Pizarro M, Monserrat O, Bianchini S, Herrera G, Crosetto M, Sarro R, González-Alonso E, Mateos RM, Ligüerzana S, López C, Moretti S (2017) A methodology to detect and update active deformation areas based on Sentinel-1 SAR images. Remote Sens 9:1002. https://doi.org/10.3390/rs9101002

    Article  Google Scholar 

  • Béjar-Pizarro M, Notti D, Mateos RM, Ezquerro P, Centolanza G, Herrera G, Bru G, Sanabria M, Solari L, Duro J, Fernández J (2017) Mapping vulnerable urban areas affected by slow-moving landslides using Sentinel-1 InSAR Data. Remote Sens 9:876. https://doi.org/10.3390/rs9090876

    Article  Google Scholar 

  • Brunner F, Zobl F, Gassner G (2003) On the capability of GPS for landslide monitoring. Felsbau 21:51–54

    Google Scholar 

  • Carlà T, Farina P, Intrieri E, Botsialas K, Casagli N (2017) On the monitoring and early-warning of brittle slope failures in hard rock masses: examples from an open-pit mine. Eng Geol 228:71–81. https://doi.org/10.1016/j.enggeo.2017.08.007

    Article  Google Scholar 

  • Carlà T, Intrieri E, Raspini F, Bardi F, Farina P, Ferretti A, Colombo D, Novali F, Casagli N (2019) Perspectives on the prediction of catastrophic slope failures from satellite InSAR. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-50792-y

    Article  Google Scholar 

  • Casagli N, Frodella W, Morelli S, Tofani V, Ciampalini A, Intrieri E, Raspini F, Rossi G, Tanteri L, Lu P (2017) Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron Disasters 4:1–23. https://doi.org/10.1186/s40677-017-0073-1

    Article  Google Scholar 

  • Casu F, Elefante E, Imperatore P, Zinno I, Manunta M, De Luca C, Lanari R (2014) SBAS-DInSAR parallel processing for deformation time series computation. IEEE J Sel Top Appl Earth Obs Remote Sen 7:3285–3296. https://doi.org/10.1109/JSTARS.2014.2322671

    Article  Google Scholar 

  • Cenni N, Fiaschi S, Fabris M (2021) Integrated use of archival aerial photogrammetry, GNSS, and InSAR data for the monitoring of the Patigno landslide (Northern Apennines, Italy). Landslides. https://doi.org/10.1007/s10346-021-01635-3

    Article  Google Scholar 

  • Chacón J, Irigaray T, Fernández T (2007) Los movimientos de ladera de la provincia de Granada. In: Ferrer M (ed) Atlas Riesgos Naturales en la Provincia de Granada, 1st edn. Diputación de Granada-Geological Survey of Spain, Madrid, pp 45–82

    Google Scholar 

  • Chae BG, Park HJ, Catani F, Simoni A, Berti M (2017) Landslide prediction, monitoring and early warning: a concise review of state-of-the-art. Geosci J 21:1033–1070. https://doi.org/10.1007/s12303-017-0034-4

    Article  Google Scholar 

  • Clague JJ, Stead D (2012) Landslides: types, mechanisms and modelling. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Conyers LB (2015) Analysis and interpretation of GPR datasets for integrated archaeological mapping. Near Surf Geophys 13:645–651

    Article  Google Scholar 

  • Corominas J, Moya J, Lloret A, Gili JA, Angeli MG, Pasuto A, Silvano S (2000) Measurement of landslide displacements using a wire extensometer. Eng Geol 55:149–166. https://doi.org/10.1016/S0013-7952(99)00086-1

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation Research Board, Washington DC, Special Report 247, Chapter 3, pp 36–75

  • Dai FC, Deng JH, Tham LG, Law KT, Lee CF (2004) A large landslide in Zigui County, Three Gorges area. Can Geotech J 41:1233–1240

    Article  Google Scholar 

  • De Luca C, Cuccu R, Elefante S, Zinno I, Manunta M, Casola V, Rivolta G, Lanari R, Casu F (2015) An on-demand Web tool for the unsupervised retrieval of earth’s surface deformation from SAR Data: the P-SBAS Service within the ESA G-POD Environment. Remote Sens 7:15630–15650. https://doi.org/10.3390/rs71115630

    Article  Google Scholar 

  • Dong J, Zhang L, Li M, Yu Y, Liao M, Gong J, Luo H (2018) Measuring precursory movements of the recent Xinmo landslide in Mao County, China with Sentinel-1 and ALOS-2 PALSAR-2 datasets. Landslides 15:135–144. https://doi.org/10.1007/s10346-017-0914-8

    Article  Google Scholar 

  • El Hamdouni (2001) Estudio de movimientos de ladera en la cuenca del río Ízbor mediante un SIG: contribución al conocimiento de la relación entre tectónica activa e inestabilidad de vertientes. Dissertation, University of Granada.

  • Eltner A, Kaiser A, Castillo C, Rock G, Neugirg F, Abellán A (2016) Image-based surface reconstruction in geomorphometry-merits, limits and developments. Earth Surf Dyn 4:359–389. https://doi.org/10.5194/esurf-4-359-2016

    Article  Google Scholar 

  • Estévez A, Delgado F, Sanz de Galdeano C, Martín-Algarra A (1985) Los Alpujárrides al sur de Sierra Nevada. Una Revisión De Su Estructura Mediterranea 4:5–32

    Google Scholar 

  • Evans SG, Guthrie RH, Roberts NJ, Bishop NF (2007) The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain. Nat Hazards Earth Syst Sci 7:89–101. https://doi.org/10.5194/nhess-7-89-2007

    Article  Google Scholar 

  • Fernández-Motril R (2013) La N-323: Una Carretera Abandonada Desde 2009. Newspaper ‘Granada Hoy’, Granada, Spain. https://www.granadahoy.com/granada/N-323-carretera-abandonada_0_744225838.html. Accessed October 2013

  • Fernández T, Brabb E, Delgado F, Martin-Algarra A, Irigaray C. Estévez A, Chacón-Montero J (1997) Rasgos geológicos y movimientos de ladera en el sector Ízbor-Vélez Benaudalla de la cuenca del río Guadalfeo (Granada). Proceedings of the IV Simposio Nacional Sobre Taludes y Laderas Inestables, Granada, pp. 795–808

  • Fisher RB, Breckon TP, Dawson-Howe K, Fitzgibbon A, Robertson C, Trucco E, Williams CKI (2013) Dictionary of computer vision and image processing. John Wiley & Sons, New Yersey

    Google Scholar 

  • Foumelis M, Papadopoulou T, Bally P, Pacini F, Provost F, Patruno J (2019) Monitoring geohazards using on-demand and systematic services on ESA’s geohazards exploitation platform. IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, pp 5457–5460. https://doi.org/10.1109/igarss.2019.8898304

  • Fukuzono T (1985) A new method for predicting the failure time of a slope. Proceedings of the fourth international conference and field workshop on landslides, Tokyo, pp 145–150

  • Galve JP, Pérez-Peña JV, Azañón JM, Closson D, Caló F, Reyes-Carmona C, Jabaloy A, Ruano P, Mateos RM, Notti D, Herrera G, Béjar-Pizarro M, Monserrat O, Bally P (2017) Evaluation of the SBAS InSAR Service of the European Space Agency’s Geohazard Exploitation Platform (GEP) Remote Sens 9 1291 https://doi.org/10.3390/rs9121291

  • Geophysical Survey Systems (GSSI) RADAN 7 (Software). (2012)

  • Glastonbury J, Fell R (2010) Geotechnical characteristics of large rapid rock slides. Can Geotech J 47:116–132

    Article  Google Scholar 

  • Gorum T, Fan X, van Westen CJ, Huang RQ, Xu Q, Tang C, Wang G (2011) Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology 133:152–167. https://doi.org/10.1016/j.geomorph.2010.12.030

    Article  Google Scholar 

  • Govi M, Gullà G, Nicoletti PG (2002) Val Pola rock avalanche of July 28, 1987, in Valtellina (Central Italian Alps). Rev Eng Geol 15:71–89

    Article  Google Scholar 

  • Gullà G, Peduto D, Borrelli L, Antronico L, Fornaro G (2017) Geometric and kinematic characterization of landslides affecting urban areas: the Lungro case study (Calabria, Southern Italy). Landslides 14:171–188. https://doi.org/10.1007/s10346-015-0676-0

    Article  Google Scholar 

  • Günther A, Wienhöfer J, Konietzky H (2012) Automated mapping of rock slope geometry, kinematics and stability with RSS-GIS. Nat Hazards 61:29–49

    Article  Google Scholar 

  • Gutiérrez F, Lucha P, Galve JP (2010) Reconstructing the geochronological evolution of large landslides by means of the trenching technique in the Yesa Reservoir (Spanish Pyrenees). Geomorphology 124:124–136. https://doi.org/10.1016/j.geomorph.2010.04.015

    Article  Google Scholar 

  • Gutiérrez F, Linares R, Roqué C, Zarroca M, Carbonel D, Rosell J, Gutiérrez M (2015) Large landslides associated with a diapiric fold in Canelles Reservoir (Spanish Pyrenees): detailed geological–geomorphological mapping, trenching and electrical resistivity imaging. Geomorphology 241:224–242. https://doi.org/10.1016/j.geomorph.2015.04.016

    Article  Google Scholar 

  • Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    Google Scholar 

  • IGN-UPM, (2002) Actualización de Mapas de Peligrosidad Sísmica de España 2002 (en valores de intensidad, escala EMS-98). Centro Nacional de Información Geográfica, Madrid

    Google Scholar 

  • IGN-UPM, (2015) Actualización de Mapas de Peligrosidad Sísmica de España 2012. Centro Nacional de Información Geográfica, Madrid

    Google Scholar 

  • Intrieri E, Raspini F, Fumagalli A, Lu P, Del Conte S, Farina P, Allievi J, Ferretti A, Casagli N (2018) The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides 15:123–133. https://doi.org/10.1007/s10346-017-0915-7

    Article  Google Scholar 

  • Jabaloy A, Galindo-Zaldívar J, González-Lodeiro F (1993) The Alpujárride-Nevado-Filábride extensional shear zone, Betic Cordillera, SE Spain. J Struct Geol 15:555–569

    Article  Google Scholar 

  • Janeras M, Jara JA, Royan MJ, Vilaplana JM, Aguasca A, Fàbregas X, Gili JA, Buxó P (2017) Multi-technique approach to rockfall monitoring in the Montserrat massif (Catalonia, NE Spain). Eng Geol 219:4–20. https://doi.org/10.1016/j.enggeo.2016.12.010

    Article  Google Scholar 

  • Jol HM (2008) Ground penetrating radar theory and applications. Elsevier, Amsterdam

    Google Scholar 

  • Khazai B, Sitar N (2004) Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events. Eng Geol 71:79–95. https://doi.org/10.1016/S0013-7952(03)00127-3

    Article  Google Scholar 

  • Kiersch GA (1964) Vaiont Reservoir disaster. Civ Eng 34:32–40

    Google Scholar 

  • Kojan E, Hutchinson JD (1978) Mayunmarca rockslide and debris flow, Peru. In: Voight B (ed) Developments in geotechnical engineering, 14th vol. Elsevier, Amsterdam, pp. 315–353

  • Kraus K (1997) Photogrammetry Volume 2 Advanced methods and applications. Dümmler Verlag, Bonn

  • Lissak C, Maquaire O, Malet JP, Lavigne F, Virmoux C, Gomez C, Davidson R (2015) Ground-penetrating radar observations for estimating the vertical displacement of rotational landslides. Nat Hazards Earth Syst Sci 15:1399–1406. https://doi.org/10.5194/nhess-15-1399-2015

    Article  Google Scholar 

  • Manunta M, Bonano M, Buonanno S, Casu F, De Luca C, Fusco A, Lanari R, Manzo M, Ojha, C, Pepe A, Zinno I (2016) Unsupervised parallel SBAS-DInSAR chain for massive and systematic Sentinel-1 data processing. Proceedings of the 2016 IEEE International Geosci Remote Sens Symposium, Beijing, pp 3890–3893. https://doi.org/10.1109/igarss.2016.7730010

  • Manunta M, De Luca C, Zinno I, Casu F, Manzo M, Bonano M, Fusco A, Pepe A, Onorato G, Berardino P, De Martino P, Lanari R. (2019) The parallel SBAS approach for Sentinel-1 interferometric wide swath deformation time-series generation: algorithm description and products quality assessment. IEEE Trans Geosci Remote Sens 57:6259 – 6281. https://doi.org/10.1109/TGRS.2019.2904912

    Article  Google Scholar 

  • Martínez-Martínez JM, Soto JI, Balanyá JC (2002) Orthogonal folding of extensional detachments: structure and origin of the Sierra Nevada Elongated Dome (Betics, SE Spain). Tectonics 21:1–3. https://doi.org/10.1029/2001TC001283

    Article  Google Scholar 

  • Martínez-Martínez JM, Soto JI, Balanyá JC (2004) Elongated domes in extended orogens: a mode of mountain uplift in the Betics (Southeast Spain). Geol Soc A Spec Pap 380:243–266

    Google Scholar 

  • Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the earth’s surface. Rev Geophys 36:441–500. https://doi.org/10.1029/97RG03139

    Article  Google Scholar 

  • Moretto S, Bozzano F, Esposito C, Mazzanti P, Rocca A (2017) Assessment of landslide pre-failure monitoring and forecasting using satellite SAR interferometry. Geosciences 7:36. https://doi.org/10.3390/geosciences7020036

    Article  Google Scholar 

  • Muller C, Pacheco J, Angarita M, Alvarado GE, Sánchez B, Avard G (2021) El deslizamiento de las Torres del Irazú del 2020 (Costa Rica): antecedentes, colapso y situación actual. Universidad Nacional de Costa Rica-Observatorio Vulcanológico y Sismológico de Costa Rica-Comisión Nacional de Emergencias. Technical Report, pp. 34

  • Niethammer U, James MR, Rothmund S, Travelletti J, Joswig M (2012) UAV-based remote sensing of the Super-Sauze landslide: evaluation and results. Eng Geol 128:2–11. https://doi.org/10.1016/j.enggeo.2011.03.012

    Article  Google Scholar 

  • Notti D, Herrera G, Bianchini S, Meisina C, García-Davalillo JC, Zucca F (2014) A methodology for improving landslide PSI data analysis. Int J Remote Sens 35:2186–2214. https://doi.org/10.1080/01431161.2014.889864

    Article  Google Scholar 

  • Pathak S, Nilsen B (2004) Probabilistic rock slope stability analysis for Himalayan conditions. Bull Eng Geol Environ 63:25–32. https://doi.org/10.1007/s10064-003-0226-1

    Article  Google Scholar 

  • Peduto D, Santoro M, Aceto L, Borrelli L, Gullà G (2021) Full integration of geomorphological, geotechnical, A-DInSAR and damage data for detailed geometric-kinematic features of a slow-moving landslide in urban area. Landslides 18:807–825. https://doi.org/10.1007/s10346-020-01541-0

    Article  Google Scholar 

  • Pinyol NM, Alonso EE, Corominas J, Moya J (2012) Canelles landslide: modelling rapid drawdown and fast potential sliding. Landslides 9:33–51. https://doi.org/10.1007/s10346-011-0264-x

    Article  Google Scholar 

  • Pinyol NM, Alonso EE, Corominas J, Moya J (2016) Discussion on ‘Large landslides associated with a diapiric fold in Canelles reservoir (Spanish Pyrenees): detailed geological–geomorphological mapping, trenching and electrical resistivity imaging’ by Gutiérrez et al. (2015). Geomorphology 263:170–174. https://doi.org/10.1016/j.geomorph.2015.11.016

  • Poisel R, Angerer H, Pöllinger M, Kalcher T, Kittl H (2009) Mechanics and velocity of the Lärchberg-Galgenwald landslide (Austria). Eng Geol 109:57–66. https://doi.org/10.1016/j.enggeo.2009.01.002

    Article  Google Scholar 

  • Regmi AD, Yoshida K, Nagata H, Pradhan AMS, Pradhan B, Pourghasemi HR (2013) The relationship between geology and rock weathering on the rock instability along Mugling-Narayanghat road corridor, Central Nepal Himalaya. Nat Hazards 66:501–532

    Article  Google Scholar 

  • Reyes-Carmona C, Barra A, Galve JP, Monserrat O, Pérez-Peña JV, Mateos RM, Notti D, Ruano P, Millares A, López-Vinielles J, Azañón JM (2020a) Sentinel-1 DInSAR for monitoring active landslides in critical infrastructures: the case of the Rules Reservoir (Southern Spain). Remote Sens 12:809. https://doi.org/10.3390/rs12050809

    Article  Google Scholar 

  • Reyes-Carmona C, Galve JP, Barra A, Monserrat O, Mateos RM, Azañón JM, Pérez-Peña JV, Ruano P (2020b) The Sentinel-1 CNR-IREA SBAS service of the European Space Agency’s Geohazard Exploitation Platform (GEP) as a powerful tool for landslide activity detection and monitoring. EGU General Assembly Conference Abstracts pp 19410. https://doi.org/10.5194/egusphere-egu2020-19410

  • Riquelme A, Del Soldato M, Tomás R, Cano M, Bordehore LJ, Moretti S (2019) Digital landform reconstruction using old and recent open access digital aerial photos. Geomorphology 329:206–223. https://doi.org/10.1016/j.geomorph.2019.01.003

    Article  Google Scholar 

  • Rocscience DIPS (Software) (2004). Rocscience Inc., Toronto.

  • Rodriguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn Earthq Eng 18:325–346. https://doi.org/10.1016/S0267-7261(99)00012-3

    Article  Google Scholar 

  • Roopnarine R, Eudoxie G, Opadeyi J (2013) Soil friction angle as an instability factor in landslide susceptibility modelling. Soil Dyn Earthq Eng 3:55–71

    Google Scholar 

  • Schuster RL (1979) Reservoir-induced landslides. Bull. Int. Assoc. Eng Geol Bull L’assoc Int Géologie L’ingénieur 20:8–15. https://doi.org/10.1007/BF02591233

    Article  Google Scholar 

  • Segalini A, Carri A, Valletta A, Martino M (2019) Innovative monitoring tools and early warning systems for risk management: a case study. Geosciences 9:62. https://doi.org/10.3390/geosciences9020062

    Article  Google Scholar 

  • Simancas JF (2018) A reappraisal of the Alpine structure of the Alpujárride Complex in the Betic Cordillera: interplay of shortening and extension in the westernmost Mediterranean. J Struct Geol 115:231–242. https://doi.org/10.1016/j.jsg.2018.08.001

    Article  Google Scholar 

  • Simancas JF, Campos J (1993) Compresión NNW-SSE tardi a postmetamórfica y extensión subordinada en el Complejo Alpujárride (Dominio de Alborán, Orógeno Bético). Rev Soc Geol España 6:23–35

    Google Scholar 

  • Snavely N, Seitz SM, Szeliski R (2008) Modeling the world from internet photo collections. Int J Comput vis 80:189–210

    Article  Google Scholar 

  • Solari L, Barra A, Herrera G, Bianchini S, Monserrat O, Béjar-Pizarro M, Crosetto M, Sarro R, Moretti S (2018) Fast detection of ground motions on vulnerable elements using Sentinel-1 InSAR data. Geomatics Nat Hazards Risk 9:152–174. https://doi.org/10.1080/19475705.2017.1413013

    Article  Google Scholar 

  • Spanilá T, Horsky O, Banach M (2002) Slides and sliding in the water reservoirs banks. In: Rybár J, Stemberk J, Wagner P (eds) Landslides: Proceedings of the First European Conference on Landslides. CRC Press, Boca Ratón pp. 315

  • Szeliski R (2010) Computer vision: algorithms and applications. Springer Science and Business Media, Berlin

    Google Scholar 

  • Tapete D, Cigna F (2017) InSAR data for geohazard assessment in UNESCO World Heritage sites: state-of-the-art and perspectives in the Copernicus era. Int J Appl Earth Obs Geoinf 63:24–32. https://doi.org/10.1016/j.jag.2017.07.007

    Article  Google Scholar 

  • Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28:3425–3446. https://doi.org/10.1080/01431160601024234

    Article  Google Scholar 

  • Ullman S (1979) The interpretation of visual motion. Massachusetts Instituto of Technology, Massachusetts

  • Valletta A, Segalini A, Carri A (2020) Application of a generalized criterion: time-of-failure forecast and alert thresholds assessment for landslides. In: De Mario M, Tiwari AK (eds) Applied geology. Springer, Cham pp 283–298. https://doi.org/10.1007/978-3-030-43953-8_17

  • Wang FW, Zhang YM, Huo AT, Matsumoto T, Huang BT (2004) The July 14, 2003 Qianjiangping landslide, Three Gorges Reservoir, China. Landslides 1:157–162. https://doi.org/10.1007/s10346-004-0020-6

    Article  Google Scholar 

  • Westoby MJJ, Brasington J, Glasser NFF, Hambrey MJJ, Reynolds JMM (2012) Structure-from-motion photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314. https://doi.org/10.1016/j.geomorph.2012.08.021

    Article  Google Scholar 

  • Wyllie DC, Mah C (2004) Rock slope engineering. CRC Press, Boca Ratón

    Google Scholar 

  • Zhang ZY, Chen SM, Tao LJ (2002) 1983 Sale mountain landslide, Gansu Province, China. Rev Eng Geol 15:149–163

    Article  Google Scholar 

Download references

Acknowledgements

The access to the Geohazard Exploitation Platform (GEP) of the European Space Agency (ESA) was provided by the Early Adopters Programme. The authors wish to thank the Road State Demarcation for providing valuable information and testimonies. The authors are grateful to Cristina Accotto and Alejandro Ruiz-Fuentes for the assistance on the structural geology interpretations. The authors also thank Dr. Lorenzo Valetti for the language revision.

Funding

This work was mainly supported by the European Regional Development Fund (ERDF) through the project “RISKCOAST” (SOE3/P4/E0868) of the Interreg SUDOE Programme. The work of J.P.G., M.M-S., P.R. and J.M.A. was also supported by the “Ramón y Cajal” Programme (RYC-2017–23335) of the Spanish Ministry of Science, the project “MORPHOMED”—PID2019-107138RB-I00 / SRA (State Research Agency / https://doi.org/10.13039/501100011033) and the project “RADANDALUS” (P18-RT-3632) and B-RNM-305-UGR1818 of the FEDER / Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Reyes-Carmona.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 23767 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Carmona, C., Galve, J.P., Moreno-Sánchez, M. et al. Rapid characterisation of the extremely large landslide threatening the Rules Reservoir (Southern Spain). Landslides 18, 3781–3798 (2021). https://doi.org/10.1007/s10346-021-01728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-021-01728-z

Keywords

Navigation