Skip to main content
Log in

Automated mapping of rock slope geometry, kinematics and stability with RSS-GIS

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A GIS-implemented, deterministic approach for the automated spatial evaluation of geometrical and kinematical properties of rock slope terrains is presented. Based on spatially distributed directional information on planar geological fabrics and DEM-derived topographic attribute data, the internal geometry of rock slopes can be characterized on a grid cell basis. For such computations, different approaches for the analysis and regionalization of available structural directional information applicable in specific tectonic settings are demonstrated and implemented in a GIS environment. Simple kinematical testing procedures based on feasibility criteria can be conducted on a pixel basis to determine which failure mechanisms are likely to occur at particular terrain locations. In combination with hydraulic and strength data on geological discontinuities, scenario-based rock slope stability evaluations can be performed. For conceptual investigations on rock slope failure processes, a GIS-based specification tool for a 2-D distinct element code (UDEC) was designed to operate with the GIS-encoded spatially distributed rock slope data. The concepts of the proposed methodology for rock slope hazard assessments are demonstrated at three different test sites in Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angelier J (1994) Fault-slip analysis and paleostress reconstructions. In: Hancock PL (ed) Continental Deformation. Pergamon, Oxford, pp 53–100

    Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications. Wiley, New York

    Google Scholar 

  • Costa M, Coggan JS, Eyre JM (1999) Numerical modelling of slope behaviour at Delabole slate quarry. Int J Surf Min, Reclam Environ 13:11–18

    Article  Google Scholar 

  • Crosta GB, Frattini P (2003) Distributed modelling of shallow landslides triggered by intense rainfall. Nat Haz Earth Syst Sci 3:81–93

    Article  Google Scholar 

  • Cruden DM (1989) Limits to common toppling. Can Geotech J 26:737–742

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, New York

    Google Scholar 

  • de Kemp EA (1998) Three-dimensional projection of curvilinear geological features through direction cosine interpolation of structural field observations. Comput Geosci 24:269–284

    Article  Google Scholar 

  • de Kemp EA (1999) Visualization of complex geological structures using 3-D Bezier construction tools. Comput Geosci 25:581–597

    Article  Google Scholar 

  • Derron M-H, Jaboyedoff M, Blikra LH (2005) Preliminary assessment of rockslide and rockfall hazards using a DEM (Oppstadhornet, Norway). Nat Haz Earth Syst Sci 5:285–292

    Article  Google Scholar 

  • Ghosh S, Günther A, Carranza EJ, van Westen CJ, Jetten V (2010) Rock slope instability assessment using spatially distributed structural orientation data in Darjeeling Himalaya (India). Earth Surf Proc Land 35:1773–1793

    Article  Google Scholar 

  • Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modelling: requirements for susceptibility and hazard assessments in a GIS frame work. Eng Geol 102:214–226

    Article  Google Scholar 

  • Gokceoglu C, Sonmez H, Ercnoglu M (2000) Discontinuity controlled probabilistic slope failure risk maps of the Altindag settlement region in Turkey. Eng Geol 55:277–296

    Article  Google Scholar 

  • Goodman RE, Bray JW (1976) Toppling of rock slopes. In: Proc. Speciality Conference on Rock Engineering for Foundations and Slopes, ASCE, Boulder, pp 201–234

    Google Scholar 

  • Grenon M, Hadjigeorgiou J (2010) Integrated structural stability analysis for preliminary open pit design. Int J Rock Mech Min Sci 47:450–460

    Article  Google Scholar 

  • Günther A (2003) SLOPEMAP: programs for automated mapping of geometrical and kinematical properties of hard rock hill slopes. Comput Geosci 29:865–875

    Article  Google Scholar 

  • Günther A, Thiel C (2009) Combined rock slope stability and shallow landslide susceptibility assessment of the Jasmund cliff area (Rügen Island, Germany). Nat Haz Earth Syst Sci 9:687–698

    Article  Google Scholar 

  • Günther A, Carstensen A, Pohl W (2002) GIS-applications in slope stability assessments. In: Rybar J, Stemberk J, Wagner P (eds) Landslides. Balkema, Rotterdam, pp 175–184

    Google Scholar 

  • Günther A, Carstensen A, Pohl W (2004) Automated sliding susceptibility assessments of rock slopes. Nat Haz Earth Syst Sci 4:95–102

    Article  Google Scholar 

  • Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: a computer program for the three-dimensional modelling of rock-falls. Comput Geosci 28:1079–1093

    Article  Google Scholar 

  • Hack R, Price D, Rengers N (2003) A new approach to rock slope stability–a probabilistic classification (SSPC). Bull Eng Geol Environ 62:167–184

    Google Scholar 

  • Hinze C (1971) Erläuterungen zur Geologischen Karte von Niedersachsen 1:25000 Blatt 4128 Clausthal-Zellerfeld. Nieders, Landesamt f. Bodenforschung, Hannover

    Google Scholar 

  • Hoek E (1994) Strength of rock masses. ISRM News 2:4–16

    Google Scholar 

  • Hoek E, Bray JW (1981) Rock Slope Engineering. IMM, London

    Google Scholar 

  • Hutchinson JN (2002) Chalk flows from the coastal cliffs of northwest Europe. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms, Reviews in Engineering Geology, vol 15, pp 257–302

  • ITASCA (2004) UDEC 4.0 Manuals. Itasca Consulting Group, Inc., Minneapolis, Minnesota

    Google Scholar 

  • Jaboyedoff M, Baillifard F, Philippossian F, Rouiller JD (2004) Assessing fracture occurence using ‘weighted fracture density’: a step forward towards estimating rock slope instability hazard. Nat Haz Earth Syst Sci 4:83–93

    Article  Google Scholar 

  • Jaboyedoff M, Couture R, Locat P (2009) Structural analysis of Turtle Mountain (Alberta) using digital elevation model: toward a progressive failure. Geomorphology 103:5–16

    Article  Google Scholar 

  • Jones CL, Higgins JD, Andrew RD (2000) Colorado Rockfall Simulation Program Version 4.0. Colorado Geol, Survey

    Google Scholar 

  • Marinos P, Hoek E (2000) GSI: a geologically friendly tool for rock mass strength estimation. Proceedings of the genomic researchers Melbourne, 2000 1, pp 1422–1440

  • Meentemeyer RK, Moody A (2000) Automated mapping of conformity between topographic and geological surfaces. Comput Geosci 26:815–829

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30:1153–1171

    Article  Google Scholar 

  • Nichol SL, Hungr O, Evans SG (2002) Large scale brittle and ductile toppling of rock slopes. Can Geotech J 39:773–788

    Article  Google Scholar 

  • Obst K, Schütze K (2006) Ursachenanalyse der Abbrüche an der Steilküste von Jasmund/Rügen. Z Geol Wiss 34:39–54

    Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability modelling. In: Proceedings of 8th Congress of IAEG, Vancouver

  • Park HJ, West TR, Woo I (2005) Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Interstate Highway 40, Western North Carolina, USA. Eng Geol 79:230–250

    Article  Google Scholar 

  • Pröscholdt H (1892) Erläuterungen zur geologischen Specialkarte von Preußen und den Thüringischen Staaten, Blatt Haina (Dingsleben). Schropp, Berlin

    Google Scholar 

  • Romana M (1985) New adjustment ratings for application of Bieniawski classification to slopes. In: Proceedings of the International symposium on the role of rock mech.:pp 49–53

  • Schmidt KH, Beyer I (2002) High-magnitude landslide events on a limestone-scarp in central Germany: morphometric characteristics and climatic controls. Geomorphology 49:323–342

    Article  Google Scholar 

  • Serafim JL, Pereira JP (1983) Considerations on the geomechanical classification of Bieniawski. In: Proceedings of the international symposium for engineering geology and underground construction, Balkema, Rotterdam, pp 34–43

  • Stead D, Eberhardt E, Coggan JS (2006) Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Eng Geol 83:217–235

    Article  Google Scholar 

  • Steinich G (1972) Endogene Tektonik in den Unter-Maastricht-Vorkommen auf Jasmund/Rügen. Geologie 21(22):1–207

    Google Scholar 

  • Wallbrecher E (1986) Tektonische und Gefügekundliche Arbeitsweisen. Enke, Stuttgart

    Google Scholar 

  • Wienhöfer J (2005) Hangstabilitätsanalysen mit GIS und numerischer Simulation am Beispiel einer Schichtstufe im Werratal bei Themar (Thüringen). Diploma Thesis, University of Braunschweig (unpublished)

  • Wienhöfer J, Lindenmaier F, Zehe E (2010) Challenges in understanding the hydrologic controls on the mobility of slow-moving landslides. Vadose Zone J 9. doi:10.2136/vzj2009.0182

Download references

Acknowledgments

We are indebted to numerous collaborators testing RSS-GIS and sharing their experiences and suggestions with us, greatly contributing to the improvement of the system. We like to thank Walter Pohl (University of Braunschweig) for all his effort supporting the development and applicability of the methodology. We are grateful to Michel Jaboyedoff (University of Lausanne) and an anonymous journal referee for their constructive reviews that considerably helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Günther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günther, A., Wienhöfer, J. & Konietzky, H. Automated mapping of rock slope geometry, kinematics and stability with RSS-GIS. Nat Hazards 61, 29–49 (2012). https://doi.org/10.1007/s11069-011-9771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-011-9771-2

Keywords

Navigation