Abellán A, Vilaplana JM, Calvet J, Garcia-Selles D, Asensio E (2011) Rockfall monitoring by Terrestrial Laser Scanning – case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Nat Hazards Earth Syst Sci 11:829–841. https://doi.org/10.5194/nhess-11-829-2011
Article
Google Scholar
Abellán A, Derron MH, Jaboyedoff M (2016) Use of 3D point clouds in geohazards special issue: current challenges and future trends. Remote Sens 8:130. https://doi.org/10.3390/rs8020130
Article
Google Scholar
Agisoft © PhotoScan 1.4.5. Agisoft LLC. St. Petersburg, Russia. (2020) https://www.agisoft.com/
Akca D (2007) Matching of 3D surfaces and their intensities. ISPRS J Photogramm Remote Sens 62(2):112–121. https://doi.org/10.1016/j.isprsjprs.2006.06.001
Article
Google Scholar
Al-Rawabdeh A, He F, Mousaa A, El-Sheimy N, Habib A (2016) Using an unmanned aerial vehicle-based digital imaging system to derive a 3D point cloud for landslide scarp recognition. Remote Sens 8:95. https://doi.org/10.3390/rs8020095
Article
Google Scholar
Al-Rawabdeh A, Mousaa A, Foroutan M, El-Sheimy N, Habib A (2017) Time series UAV Image-based point clouds for landslide progression evaluation applications. Sensors (Basel)17(10): 2378. https://doi.org/10.3390/s17102378
Barbarella M, Fiani M, Lugli A (2015) Landslide monitoring using multitemporal terrestrial laser scanning for ground displacement analysis, Geomatics. Natural Hazards and Risk 6(5-7):398–418. https://doi.org/10.1080/19475705.2013.863808
Article
Google Scholar
Barnhart TB, Crosby BT (2013) Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska. Remote Sens 5:2813–2837. https://doi.org/10.3390/rs5062813
Article
Google Scholar
Benini A, Biavati G, Generali M, Pizziolo M (2012) The Poggio Baldi Landslide (high Bidente valley): event and post-event analysis and geological characterization. Proceedings 7th EUREGEO, Volume 1, Bologna, Italy
Bitelli G, Dubbini M, Zanutta A (2004) Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35(B5):246–251
Google Scholar
Bonini M (2007) Interrelations of mud volcanism, fluid venting, and thrust-anticline folding: examples from the external northern Apennines (Emilia-Romagna, Italy). J Geophys Res 112:B08413. https://doi.org/10.1029/2006JB004859
Article
Google Scholar
Bossi G, Cavalli M, Cream S, Frigerio S, Quan Luna B, Mantovani M, Marcato G, Schenato L, Pasuto A (2015) Multi-temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (eastern Italian Alps). Nat Hazards Earth Syst Sci 15:715–722. https://doi.org/10.5194/nhess-15-715-2015
Article
Google Scholar
Bozzano F, Cipriani I, Mazzanti P, Prestininzi A (2011) Displacement patterns of a landslide affected by human activities: insights from ground-based InSAR monitoring. Natural Hazards. DOI: 10.007/s11069-011-9840-6
Conti P, Pieruccini P, Bonciani F, Callegari I (2009) Explanatory notes of the geological map of Italy, scale 1:50.000, sheet 266 “Mercato Saraceno”
Cruden DM, Varnes DJ (1996) Landslide types and processes. In Landslides: Investigation and Mitigation; Turner, AK, Schuster, RL, Eds.; National Academy Press: Washington, DC, USA, pp 36–75
Delacourt C, Allemand P, Casson B, Vadon H (2004) Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images. Geophys Res Lett 31:L15619. https://doi.org/10.1029/2004GL020193
Article
Google Scholar
Dewitte O, Jasselette JC, Cornet Y, Van Den Eeckhaut M, Collignon A, Poesen J, Demoulin A (2008) Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Eng Geol 99:11–22. https://doi.org/10.1016/j.enggeo.2008.02.006
Article
Google Scholar
Esposito G, Mastrorocco G, Salvini R, Oliveti M, Starita P (2017) Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ Earth Sci 76:103. https://doi.org/10.1007/s12665-017-6409-z
Article
Google Scholar
Farabegoli E, Benini A, Martelli L, Onorevoli G, Severi P (1991) Geology of the Romagnolo Apennines from Campigna to Cesenatico. Mem Descr Carta Geol d’It XLVI:165–184
Feroni AC, Leoni L, Martelli L, Martinelli P, Ottria G, Sarti G (2001) The Romagna Apennines, Italy: an eroded duplex. Geol J 36:39–54. https://doi.org/10.1002/gj.874
Article
Google Scholar
Fugazza D, Scaioni M, Corti M, D’Agata C, Azzoni RS, Cernuschi M, Smiraglia C, Diolaiuti GA (2018) Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards. Nat Hazards Earth Syst Sci 18:1055–1071. https://doi.org/10.5194/nhess-18-1055-2018
Article
Google Scholar
Girardeau-Montaut D (2006) Détection de Changement sur des Données Géométriques 3D. PhD manuscript (in French), Signal and Image processing, Telecom Paris (http://www.pastel.archives-ouvertes.fr/pastel-00001745). Accessed on 28 February 2020
Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. https://doi.org/10.1007/s10346-013-0436-y
Article
Google Scholar
INGV (2006) National Seismic Hazard Map of Italy, OPCM 3519/2006. All. 1B
Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2010) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28. https://doi.org/10.1007/s11069-010-9634-2
Article
Google Scholar
Kromer R, Lato MJ, Hutchinson DJ, Gauthier D, Edwards T (2017a) Managing rockfall risk through baseline monitoring of precursors using a terrestrial laser scanner. Canadian Geotechnical Journal 54(7):953–967. https://doi.org/10.1139/cgj-2016-0178
Article
Google Scholar
Kromer RA, Abellán A, Hutchinson DJ, Lato MJ, Chanut MA, Dubois L, Jaboyedoff M (2017b) Automated terrestrial laser scanning with near real-time change detection - monitoring of the Séchilienne landslide. Earth Surf. Dynam. Discuss. https://doi.org/10.5194/esurf-2017-6
Lague D, Brodu N, Leroux J (2013) Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J Photogramm 82:10–26. https://doi.org/10.1016/j.isprsjprs.2013.04.009
Article
Google Scholar
Lato MJ, Hutchinson DJ, Diederichs M, Ball D, Harrap R (2009) Engineering monitoring of rockfall hazards along transportation corridors: using mobile terrestrial LiDAR. Nat Hazards Earth Syst Sci 9:935–946
Article
Google Scholar
Lato MJ, Hutchinson DJ, Gauthier D, Edwards T, Ondercin M (2014) Comparison of airborne laser scanning, terrestrial laser scanning, and terrestrial photogrammetry for mapping differential slope change in mountainous terrain. Can Geotech J 52(2):129–140. https://doi.org/10.1139/cgj-2014-0051
Article
Google Scholar
Lato MJ, Gauthier D, Hutchinson DJ (2015) Rock slopes asset management. Selecting the Optimal Three-Dimensional Remote Sensing Technology Transportation Research Record. J Transp Res Board 2510. https://doi.org/10.3141/2510-02
Mantovani F, Soeters R, Van Wasten CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15:213–225
Article
Google Scholar
Margottini C, Spizzichino D, Crosta GB, Frattini P, Mazzanti P, Scarascia Mugnozza G, Beninati L. Rock fall instabilities and safety of visitors in the historic rock cut monastery of Vardzia (Georgia). Proceedings of the Volcanic Rocks and Soils Workshop. Isle of Ischia, Italy (24-25 September 2015)
Martelli L, Camassi R, Catanzariti R, Fornaciari E, Peruzza L, Spadafora E (2002) Explanatory notes of the geological map of Italy, scale 1:50,000, sheet 265 “Bagno di Romagna”
Mazzanti P, Brunetti A, Bretschneider A (2015) A New Approach Based on Terrestrial Remote-sensing Techniques for Rock Fall Hazard Assessment. in: Modern technologies for landslide monitoring and prediction, SPRINGER: 69-87.
Mazzanti P, Bozzano F, Brunetti A, Caporossi P, Esposito C, Scarascia Mugnozza G (2017) Experimental landslide monitoring site of Poggio Baldi landslide (Santa Sofia, N-Apennine, Italy). Springer International Publishing AG M. Mikoš et al. (eds.), Advancing Culture of Living with Landslides, https://doi.org/10.1007/978-3-319-53487-9_29
Miko M, Vidmar A, Brilly M (2005) Using a laser measurement system for monitoring morphological changes on the Strug rock fall, Slovenia. Natural Hazards and Earth System Science, Copernicus Publications on behalf of the European Geosciences Union, 5 (1): 143-153
Mineo S, Pappalardo G, Mangiameli M, Campolo S, Mussumeci G (2018) Rockfall analysis for preliminary Hazard assessment of the cliff of Taormina Saracen Castle (Sicily). Sustainability 10:417. https://doi.org/10.3390/su10020417
Article
Google Scholar
Mosbrucker AR, Major J, Spicer KR, Pitlick J (2017) Camera system considerations for geomorphic applications of SfM photogrammetry. Earth Surf Process Landforms 42:969–986. https://doi.org/10.1002/esp.4066
Article
Google Scholar
Niethammer U, James MR, Rothmund S, Travelletti J, Joswig M (2012) UAV-based remote sensing of the Super-Sauze landslide: evaluation and results. Engineering Geology 128:2–11. https://doi.org/10.1016/j.enggeo.2011.03.012
Article
Google Scholar
Qiao G, Lu P, Scaioni M, Xu S, Tong X, Feng T, Wu H, Chen W, Tian Y, Wang W, Li R (2013) Landslide investigation with remote sensing and sensor network: from susceptibility mapping and scaled-down simulation towards in situ sensor network design. Remote Sens 5:4319–4346. https://doi.org/10.3390/rs5094319
Article
Google Scholar
Ricci Lucchi F (1975) Depositional cycles in two turbidite formations of northern Apennines. J Sediment Petrol 45:1–43
Article
Google Scholar
Ricci Lucchi F (1981) The Miocene Marnoso-Arenacea turbidites, Romagna and Umbria Apennines. In: F. Ricci Lucchi (ed.), Excursion Guidebook, 2nd Eur. Reg. Meeting. Int. Ass. Sed: 229-303, Bologna
RIEGL RiSCAN PRO v. 1.7.4. RIEGL Laser Measurement Systems GmbH. Horn, Austria (2020). http://www.riegl.com/
Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q J Eng Geol Hydrogeol 38(4):363–375. https://doi.org/10.1144/1470-9236/05-008
Article
Google Scholar
Scaioni M, Roncella R, Alba MI (2013) Change detection and deformation analysis in point clouds: application to rock face monitoring. Photogramm Eng Remote Sens 79:441–455
Article
Google Scholar
Scaioni M, Longoni L, Melillo V, Papini M (2014) Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sens 6, 1-x manuscripts. ISSN 2072-4292
Smith MW, Carrivick JL, Quincey DJ (2015) Structure from motion photogrammetry in physical geography. Progress in Physical Geography 1–29. 10.1177%2F0309133315615805
Stumpf A, Malet JP, Deseilligny MP, Skupinski G (2014) Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology. 231:130–145. https://doi.org/10.1016/j.geomorph.2014.10.039
Article
Google Scholar
Sturdivant EJ, Lents EE, Thieler ER, Farris AS, Weber KM, Remsen DP, Miner S, Henderson RE (2017) UAS-SfM for coastal research: geomorphic feature extraction and land cover classification from high-resolution elevation and optical imagery. Remote Sens 9:1020. https://doi.org/10.3390/rs9101020
Article
Google Scholar
Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, Volume 106:163–182. https://doi.org/10.1016/j.enggeo.2009.03.004
Article
Google Scholar
Varnes DJ (1978) Slope movements, type and process. Schuster RL, Krizel RJ, eds., Landslides analysis and control. Transp. Res. Board., Special report 176, Nat. Acad. Press. Washington, D.C., 11-33
Ventura G, Vilardo G, Terranova C, Bellucci Sessa E (2011) Tracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: the Montaguto landslide (Southern Italy). Remote Sens Environ 115:3237–3248. https://doi.org/10.1016/j.rse.2011.07.007
Article
Google Scholar
Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314. https://doi.org/10.1016/j.geomorph.2012.08.021
Article
Google Scholar
Wilkinson MW, Jones RR, Woods CE, Gilment SR, McCaffrey KJW, Kokkalas S, Long JJ (2016) A comparison of terrestrial laser scanning and structure-from-motion photogrammetry as methods for digital outcrop acquisition. Geosphere 12(6):1865–1880. https://doi.org/10.1130/GES01342.1
Article
Google Scholar
Williams JG, Rosser NJ, Hardy RJ, Brain MJ, Afana AA (2018) Optimising 4-D surface change detection: an approach for capturing rockfall magnitude–frequency. Earth surface dynamics 6(1):101–119
Article
Google Scholar
Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan. China Landslides 7:359–365. https://doi.org/10.1007/s10346-010-0225-9
Article
Google Scholar