Berger MJ, George DL, LeVeque RJ, Mandli KM (2011) The GeoClaw software for depth-averaged flows with adaptive refinement. Adv W Resources 34:1195–1206. https://doi.org/10.1016/j.advwatres.2011.02.016
Article
Google Scholar
Blikra, L., Longva, O., Harbitz, C., Løvholt, F.:(2005) Quantification of rock-avalanche and tsunami hazard in storfjorden, western norway. In: Landslides and avalanches, ICFL, pp. 57–64
Bondevik S, Løvholt F, Harbitz CB, Mangerud J, Dawson A, Svendsen JI (2005) The Storegga slide tsunami – comparing field observations with numerical simulations. Mar Pet Geol 22(1–2):195–208
Google Scholar
Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ (2005) Explaining the Storegga slide. Mar Pet Geol 22(1–2):11–19. https://doi.org/10.1016/j.marpetgeo.2004.12.003
Article
Google Scholar
Bullard G, Mulligan R, Carreira A, Take W (2019) Experimental analysis of tsunamis generated by the impact of landslides with high mobility. Coast Eng 152:103538
Google Scholar
Crosta GB, Imposimato S, Roddeman D (2016) Landslide spreading, impulse water waves and modelling of the Vajont rockslide. Rock Mech Rock Eng 49(6):2413–2436
Google Scholar
Enet F, Grilli ST (2007) Experimental study of tsunami generation by three-dimensional rigid underwater landslides. J Waterw Port Coast Ocean Eng 133(6):442–454. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(442)
Article
Google Scholar
Eriksen Ø, Bergh SG, Larsen Y, Kristensen L, Lauknes TR, Blikra LH, Kierulf HP (2017) Relating 3D surface displacement from satellite- and ground-based InSAR to structures and geomorphology of the Jettan rockslide, northern Norway. Nor J Geol 97:283–303
Google Scholar
Evers FM, Hager WH, Boes RM (2019) Spatial impulse wave generation and propagation. J Waterw Port Coast Ocean Eng 145(3):04019011. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000514
Article
Google Scholar
Fischer JT, Kofler A, Fellin W, Granig M, Kleemayr K (2015) Multivariate parameter optimization for computational snow avalanche simulation. J Glaciol 61(229):875–888
Google Scholar
Fritz H, Hager WH, Minor HE (2003) Landslide generated impulse waves. 1. Instantaneous flow fields. Exp Fluids 35:505–519
Google Scholar
Fruergaard M, Piasecki S, Johannessen PN, Noe-Nygaard N, Andersen TJ, Pejrup M, Nielsen LH (2015) Tsunami propagation over a wide, shallow continental shelf caused by the Storegga slide, southeastern North Sea. Denmark Geol 43(12):1047–1050. https://doi.org/10.1130/G37151.1
Article
Google Scholar
Geist EL, Parsons T (2014) Undersampling power-law size distributions: effect on the assessment of extreme natural hazards. Nat Hazards 72(2):565–595
Google Scholar
Geist EL, ten Brink US (2019) Offshore landslide hazard curves from mapped landslide size distributions. J Geophys Res Solid Earth 124(4):3320–3334. https://doi.org/10.1029/2018JB017236
Article
Google Scholar
George D, Iverson R, Cannon C (2017) New methodology for computing tsunami generation by subaerial landslides: application to the 2015 Tyndall Glacier landslide. Alaska Geophysical Research Letters 44(14):7276–7284
Google Scholar
Grezio, A., Cinti, F.R., Costa, A., Faenza, L., Perfetti, P., Pierdominici, S., Pondrelli, S., Sandri, L., Tierz, P., Tonini, R., et al.: (2020) Multi-source Bayesian probabilistic tsunami hazard analysis for the gulf of Naples (Italy). Journal of Geophysical Research: Oceans p. e2019JC015373
Grezio A, Sandri L, Marzocchi W, Argnani A, Gasparini P, Selva J (2012) Probabilistic tsunami hazard assessment for Messina strait area (Sicily, Italy). Nat Hazards 64(1):329–358
Grilli ST, Watts P (2005) Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses. J Waterw Port Coast Ocean Eng 131(6):283–297
Google Scholar
Grilli ST, Tappin DR, Carey S, Watt SF, Ward SN, Grilli AR, Engwell SL, Zhang C, Kirby JT, Schambach L et al (2019) Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Sci Rep 9(1):11946–11946
Google Scholar
Gylfadóttir SS, Kim J, Helgason JK, Brynjólfsson S, Höskuldsson Á, Jóhannesson T, Harbitz CB, Løvholt F (2017) The 2014 Lake Askja rockslide-induced tsunami: optimization of numerical tsunami model using observed data. J Geophys Res Oceans 122(5):4110–4122. https://doi.org/10.1002/2016JC012496
Article
Google Scholar
Haflidason H, Sejrup HP, Nygard A, Mienert J, Bryn P, Lien R, Forsberg CF, Berg K, Masson DG (2004) The Storegga slide: architecture, geometry and slide development. Mar Geol 213(1–4):201–234. https://doi.org/10.1016/j.margeo.2004.10.007
Article
Google Scholar
Hammack J (1973) A note on tsunamis: their generation and propagation in an ocean of uniform depth. J Fluid Mech 60:769–799
Google Scholar
Harbitz CB, Løvholt F, Pedersen G, Masson D (2006) Mechanisms of tsunami generation by submarine landslides: a short review. Nor J Geol 86(3):255–264
Google Scholar
Harbitz C, Løvholt F, Bungum H (2014a) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72(3):1341–1374. https://doi.org/10.1007/s11069-013-0681-3
Article
Google Scholar
Harbitz C, Glimsdal S, Løvholt F, Kveldsvik V, Pedersen G, Jensen A (2014b) Rockslide tsunamis in complex fjords: from an unstable rock slope at Åkerneset to tsunami risk in Western Norway. Coast Eng 88(0):101–122. https://doi.org/10.1016/j.coastaleng.2014.02.003
Article
Google Scholar
Haugen KB, Løvholt F, Harbitz CB (2005) Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar Pet Geol 22:209–217
Google Scholar
Heller V, Spinneken J (2015) On the effect of the water body geometry on landslide–tsunamis: physical insight from laboratory tests and 2d to 3d wave parameter transformation. Coast Eng 104:113–134
Google Scholar
Heller V, Hager W, Minor M (2008) Scale effects in subaerial landslide generated impulse waves. Exp Fluids 94:691–703. https://doi.org/10.1007/s00348-007-0427-7
Article
Google Scholar
Hermanns, R., Oppikofer, T., Anda, E., Blikra, L., Böhme, M., Bunkholt, H., Crosta, G., Dahle, H., Devoli, G., Fischer, L., et al.:(2013) Hazard and risk classification for large unstable rock slopes in norway. https://doi.org/10.4408/IJEGE.2013-06.B-22
Hilbe M, Anselmetti FS (2015) Mass movement-induced tsunami hazard on perialpine Lake Lucerne (Switzerland): scenarios and numerical experiments. Pure Appl Geophys 172(2):545–568
Google Scholar
Kelfoun K, Giachetti T, Labazuy P (2010) Landslide-generated tsunamis at réunion island. J Geophys Res Earth Surf 115(F4). https://doi.org/10.1029/2009JF001381
Kim, J.:(2014) Finite volume methods for tsunamis genereated by submarine landslides. Ph.D. thesis, University of Washington, https://digital.lib.washington.edu/researchworks/handle/1773/25374
Kim J, Pedersen GK, Løvholt F, LeVeque RJ (2017) A Boussinesq type extension of the geoclaw model - a study of wave breaking phenomena applying dispersive long wave models. Coast Eng 122:75–86. https://doi.org/10.1016/j.coastaleng.2017.01.005
Kim J, Løvholt F, Issler D, Forsberg CF (2019) Landslide material control on tsunami genesis: the Storegga Slide and tsunami 8,100 years BP. J Geophys Res Oceans 124(6):3607–3627. https://doi.org/10.1029/2018JC014893
Kofler, A., Fischer, J.T., Hellweger, V., Huber, A., Mergili, M., Pudasaini, S., Fellin, W., Oberguggenberger, M.: Bayesian inference in mass flow simulations - from back calculation to prediction. Geophysical Research Abstracts (2017)
Kvalstad T, Andresen L, Forsberg CF, Berg K, Bryn P, Wangen M (2005) The Storegga slide: evaluation of triggering sources and slide mechanics. Mar Pet Geol 22(1–2):245–256. https://doi.org/10.1016/j.marpetgeo.2004.10.019
Article
Google Scholar
Lane, E.M., Mountjoy, J.J., Power, W.L., Mueller, C.:(2016) Probabilistic hazard of tsunamis generated by submarine landslides in the Cook Strait Canyon (New Zealand). In: Global tsunami science: past and future, Volume I, pp. 3757–3774. Springer
LeVeque, R.J.:(2002) Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, vol. 31. Cambridge University Press . DOI 10.1017/CBO9780511791253
Li, L., Shi, F., Ma, G., & Qiu, Q.:(2019) Tsunamigenic potential of the Baiyun slide complex in the South China Sea. Journal of Geophysical Research: Solid Earth, 124:7680–7698. https://doi.org/10.1029/2019JB018062
Løvholt F, Harbitz CB, Haugen KB (2005) A parametric study of tsunamis generated by submarine slides in the Ormen Lange/Storegga area off western Norway. Mar Pet Geol 22(1–2):219–231
Google Scholar
Løvholt F, Pedersen G, Gisler G (2008) Oceanic propagation of a potential tsunami from the La Palma Island. J Geophys Res 113:C09026
Google Scholar
Løvholt F, Pedersen G, Glimsdal S (2010) Coupling of dispersive tsunami propagation and shallow water coastal response. Open Oceanogr J 4:71–82. https://doi.org/10.2174/1874252101004020071
Article
Google Scholar
Løvholt F, Pedersen G, Harbitz CB, Glimsdal S, Kim J (2015) On the characteristics of landslide tsunamis. Phil Trans R Soc London A 373(2053):20140376. https://doi.org/10.1098/rsta.2014.0376
Article
Google Scholar
Løvholt F, Bondevik S, Laberg JS, Kim J, Boylan N (2017) Some giant submarine landslides do not produce large tsunamis. Geophys Res Lett 44(16):8463–8472. https://doi.org/10.1002/2017GL074062
Article
Google Scholar
Majala, G., Anda, E., Berg, H., Eikenæs, O., Helgas Oppikopfer, T., Hermanns, R.M.,M (2016): Fare- og risikoklassifisering av ustabile fjellparti. Tech. Rep. 77-2016, Norges vassdrags- og energidirektorat . In Norwegian
Mohammed, F., Fritz, H.(2012): Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J. Geophys. Res. 117(C11015)
Okal EA, Synolakis CE (2004) Source discriminants for near-field tsunamis. Geophys J Int 158(3):899–912
Google Scholar
Panizzo, A., De Girolamo, P., Petaccia, A.(2005): Forecasting impulse waves generated by subaerial landslides. J. Geophys. Res. Oceans 110(C12025). DOI doi:https://doi.org/10.1029/2004JC002778
Paris, A., Okal, E.A., Guérin, C., Heinrich, P., Schindelé, F., Hébert, H.:(2019) Numerical modeling of the June 17, 2017 landslide and tsunami events in Karrat Fjord, West Greenland. Pure and Applied Geophysics pp. 1–23
Ren Z, Zhao X, Liu H (2019) Numerical study of the landslide tsunami in the South China Sea using Herschel-Bulkley rheological theory. Phys Fluids 31(5):056601
Google Scholar
Romstad B, Harbitz CB, Domaas U (2009) A GIS method for assessment of rock slide tsunami hazard in all Norwegian lakes and reservoirs. Nat Hazards Earth Syst Sci 9(2):353–364. https://doi.org/10.5194/nhess-9-353-2009
Article
Google Scholar
Ruffini, G., Heller, V., Briganti, R.: Numerical modelling of landslide-tsunami propagation in a wide range of idealised water body geometries. Coast Eng 153, 103518 (2019). DOI https://doi.org/https://doi.org/10.1016/j.coastaleng.2019.103518. URL http://www.sciencedirect.com/science/article/pii/S0378383919300018
Salmanidou, D.M., Guillas, S., Georgiopoulou, A., Dias, F. (2017): Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic. Proc. R. Soc. London A 473(2200) . DOI 10.1098/rspa.2017.0026
Sassa K, Dang K, Yanagisawa H, He B (2016) A new landslide-induced tsunami simulation model and its application to the 1792 Unzen-Mayuyama landslide-and-tsunami disaster. Landslides 13(6):1405–1419
Schambach L, Grilli ST, Kirby JT, Shi F (2019) Landslide tsunami hazard along the upper us east coast: effects of slide deformation, bottom friction, and frequency dispersion. Pure Appl Geophys 176(7):3059–3098
Google Scholar
Selva J, Tonini R, Molinari I, Tiberti MM, Romano F, Grezio A, Melini D, Piatanesi A, Basili R, Lorito S (2016) Quantification of source uncertainties in seismic probabilistic tsunami hazard analysis (SPTHA). Geophys J Int 205(3):1780–1803
Sepúlveda S, Serey A (2009) Tsunamigenic, earthquake-triggered rock slope failures during the april 21 2007 Aisén earthquake, southern Chile (45.5s). Andean Geol 26(1):131–136
Smith DE, Shi S, Cullingford RA, Dawson AG, Dawson S, Firth CR, Foster IDL, Fretwell PT, Haggart BA, Holloway LK, Long D (2004) The Holocene Storegga Slide tsunami in the United Kingdom. Quat Sci Rev 23(23–24):2291–2321. https://doi.org/10.1016/j.quascirev.2004.04.001
Article
Google Scholar
Tappin, D.(2010) Mass transport events and their tsunami hazard. In: D.C. Mosher, et al. (eds.) Submarine mass movements and their consequences, Adv. Nat. Technol. Haz. Res., vol. 28, pp. 667–684. Springer Science
Tappin DR, Watts P, Grilli ST (2008) The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Nat Hazards Earth Syst Sci 8:243–266
Google Scholar
Tinti S, Armigliato A, Manucci A, Pagnoni G, Zaniboni F (2005) Landslides and tsunamis of December, 2002 at Stromboli. Italia: numerical simulations. Boll Geofis Teor Appl 46(2–3):153–168
Google Scholar
Titov VV, Synolakis CE (1997) Extreme inundation flows during the Hokkaido-Nansei-Oki tsunami. Geophys Res Lett 24(11):1315–1318
Google Scholar
Urgeles R, Camerlenghi A (2013) Submarine landslides of the Mediterranean Sea: trigger mechanisms, dynamics, and frequency-magnitude distribution. J Geophys Res Earth Surf 118:2600–2618
Google Scholar
Ward SN (2001) Landslide tsunami. J Geophys Res 6(11):201–11,215
Google Scholar
Watts P (2000) Tsunami features of solid block underwater landslides. J Waterw Port Coast Ocean Eng 126(3):144–152
Google Scholar
Yavari-Ramshe S, Ataie-Ashtiani B (2016) Numerical modeling of subaerial and submarine landslide-generated tsunami waves—recent advances and future challenges. Landslides 13(6):1325–1368
Google Scholar
Zengaffinen, T., Løvholt, F., Pedersen, G. K., & Harbitz, C. B. (2020). Effects of rotational submarine slump dynamics on tsunami genesis: new insight from idealized models and the 1929 Grand Banks event. Geological Society, London, Special Publications, 500