Skip to main content

Advertisement

Log in

Reconstruction of a large runout landslide in the Krušné hory Mts. (Czech Republic)

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The aims of this study were to summarize current knowledge of a large runout prehistoric landslide, critically review all of the existing data and, in particular, gather new data in order to estimate the age of the accumulation and reveal the movement mechanism. The reconstruction of a large rockslide-rock avalanche in the NW part of the Czech Republic was supported by the analysis and interpretation of 216 boreholes and by GIS analysis of the original 1950s pre-mining surface using digitized old military topographic maps. For the age estimation, we used the Schmidt hammer test. The total volume of the quaternary deposit was calculated to be between 25.4 and 27.4 mil m3, occupying an area of 778,000 m2 and consisting of six to eight generations of colluvial sediments. Three main landslide events were identified based on extensive Schmidt hammer sampling, and the approximate age was established using a regression equation assembled by Engel (2007). All three of the documented events occurred around the time of significant climate change. The oldest event occurred due to the Oldest Dryas warming, the largest event probably occurred at the end of the Younger Dryas (11,700 yBP), and the youngest of the documented events was purely of a Holocene age, with the highest landslide frequency being during the Atlantic temperature fluctuations (approximately 8200 yBP). The slope deformation occurred on a fault slope with a relative height of over 400 m and in tectonically weakened rocks. Sediments in the Most Basin were weakened from meltwater during rapid warming periods, which allowed mobilization of rockslide deposits and runout of up to 1000 m from the mountain foothills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The term landslide has been used here to refer to all types of mass wasting processes and their accumulations.

References

  • Balatka B, Kalvoda J (2006) Geomorfologické členění reliéfu Čech. Kartografie Praha, Praha, p 79

    Google Scholar 

  • Betts MW, Latta MA (2000) Rock surface hardness as an indication of exposure age: an archaeological application of the Schmidt hammer. Archaeometry 42:209–223

    Article  Google Scholar 

  • Černá B, Engel Z (2011) Surface and sub-surface Schmidt hammer rebound value variation for a granite outcrop. Earth Surf Process Landf 36:170–179

    Article  Google Scholar 

  • Copons R, Vilaplana JM, Linares R (2009) Rockfall travel distance analysis by using empirical models (Solà ď Andorra la Vella, Central Pyrenees). Nat Haz Earth Syst Sci 9:2107–2118

    Article  Google Scholar 

  • Crandell DR (1989) Gigantic debris avalanche of Pleistocene age from ancestral Mount Shasta Volcano, California, and debris-avalanche hazard zonation. USGS Bull 1861:32

    Google Scholar 

  • Domácí L (1977) Litostratigrafie třetihorních sedimentů v hnědouhelné severočeské pánvi. Acta Univ Carol Geol 1:75–80

    Google Scholar 

  • Engel Z (2007) Measurement and age assignment of intact rock strength in the Krkonoše Mountains, Czech Republic. Z Geomorphol 51:69–80

    Article  Google Scholar 

  • Goudie AS (ed) (2004) Encyclopedia of geomorphology. Vol. 1. Routledge, London, p 1184

    Google Scholar 

  • Goudie AS (2006) The Schmidt hammer in geomorphological research. Prog Phys Geogr 30:703–718

    Article  Google Scholar 

  • Grygar T, Mach K (2013) Regional chemostratigraphic key horizons in the macrofossil-barren siliciclastic lower Miocene lacustrine sediments (Most Basin, Eger Graben, Czech Republic). Bull Geosci 88(3):557–571

    Article  Google Scholar 

  • Hartvich F, Blahut J, Stemberk J (2017) Rock avalanche and rock glacier: a compound landform study from Hornsund, Svalbard. Geomorphology 276:244–256

    Article  Google Scholar 

  • Hurník S (1986) Geologická problematika Velkolomu Českoslovensé armády. Zpravodaj SHR 3:28–49

    Google Scholar 

  • Jankovská V (1983) Palynologische Forschung am ehemaligen Komořany-See (Spätglazial bis Subatlantikum). Věstník Ústředního ústavu geologického 58 (2):99–107

  • Jankovská V (1987) Vývoj vegetace na Mostecku na základě pylových analýz sedimentů Komořanského jezera. In: Severočeská příroda 20:113

    Google Scholar 

  • Kalvoda J (1995) Geomorphological analysis of levelling measurements between Mikulovice village and Jezeri Castle in the Krusne Hory Mountains. Acta Univ Carol Geogr 30, Supplem.:139–160

    Google Scholar 

  • Kalvoda J, Stemberk J, Vilímek V, Zeman A (1990) Analysis of levelling measurements of the Earth’s surface movements on the geodynamic polygon Mikulovice - Jezeří in the Krušné hory Mts. Proc. 6th Int. IAEG Cong., 6–10 August 1990 Amsterdam, 3, 1631–1637, Balkema, Rotterdam, Brookfield

  • Kalvoda J, Vilímek V, Zeman A (1994) Earth’s surface movements in the hazardous area of Jezeří kastle, Krušné hory Mts. GeoJournal 32(3):247–252

    Article  Google Scholar 

  • Klimeš J, Vilímek V, Omelka M (2009) Implications of geomorphological research for recent and prehistoric avalanches and related hazards at Huascaran, Peru. Nat Hazards 50(1):193–209

    Article  Google Scholar 

  • Kopecký A (1989) Neotektonika severočeské hnědouhelné pánve a Krušných hor. Sbor Geol Věd Geol 44:155–170

    Google Scholar 

  • Král V (1968) Geomorfologie vrcholové části krušných hor a problém paroviny. Rozpravy Československé akademie věd 78(9):42–49

    Google Scholar 

  • Malkovský M (1977) Důležité zlomy platformního pokryvu severní části Českého masívu. Ústř Úst Geol 14:7–12

    Google Scholar 

  • Malkovský M (ed) (1985) Geologie Severočeské hnědouhelné pánve a jejího okolí. Academia, Praha, p 424

    Google Scholar 

  • Marek J (1979) Šibeniční hůrka u Dřínova před odtěžením. Uhlí 27(11):498–501

    Google Scholar 

  • Marek J (1983) Inženýrsko-geologický průzkumu stability zámku Jezeří v předpolí uhelného velkolomu. Geolog Průzk 25:234–236

    Google Scholar 

  • Němčok A, Pašek J, Rybář J (1972) Classification of landslides and other mass movements. Rock Mech 4:71–79

    Article  Google Scholar 

  • Okada Y, Uchida I (2014) Dependence of runout distance on the number of rock blocks in large-scale rock-mass failure experiments. J For Res 19(3):329–339

    Article  Google Scholar 

  • Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen M-L, Johnsen SJ, Larsen LB, Dahl-Jensen D, Bigler M, Röthlisberger R, Fischer H, Goto-Azuma K, Hansson ME, Ruth U (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res Atmos 111(6):2156–2202

    Google Scholar 

  • Růžičková E, Zeman A, Hurník S (1987) Vývoj jihovýchodního okraje Krušných hor a Mostecké pánve v mladším kenozoiku. Sbor Geol Věd, ŘA 18:9–72

    Google Scholar 

  • Rybář J (1981) Inženýrsko-geologické hodnocení stabilitních poměrů předpolí povrchových velkolomů při úpatí Krušných hor. Stabilitní řešení svahů a jejich zabezpečení, Sborník přednášek semináře, Most, pp, 76–93

  • Sánchez SJ, Mosquera DF, Vidal Romaní JR (2009) Assessing the age-weathering correspondence of cosmogenic 21Ne dated Pleistocene surfaces by the Schmidt hammer. Earth Surf Process Landf 34:1121–1125

    Article  Google Scholar 

  • Sartori M, Baillifard F, Jaboyedoff M, Rouiller J-D (2003) Kinematics of the 1991 Randa rockslides (Valais, Switzerland). Nat Hazards Earth Syst Sci 3:423–433

    Article  Google Scholar 

  • Schlesinger L (1871) Festschrift zur Erinnerung an die Feier des 10. Gründungstages im Jahre 1871. Geschichte des Kummerner Sees bei Brüx, Praha, p 26

    Google Scholar 

  • Selby MJ (1980) A rock–mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Z Geomorphol 24:31–51

    Google Scholar 

  • Shakesby RA, Matthews JA, Owen G (2006) The Schmidt hammer as a relative-age dating tool and its potential for calibrated-age dating in Holocene glaciated environments. Quat Sci Rev 25:2846–2867

    Article  Google Scholar 

  • Špůrek M (1974) Sesuvné jevy u Dřínova na Mostecku. Věst Ustř Úst Geol 49:231–234

    Google Scholar 

  • Stoffel M (2005) Spatio-temporal variations of rockfall activity into forests—results from tree-ring and tree analysis, University of Fribourg. GeoFocus 12:188

    Google Scholar 

  • Strom KE, Abdrakhmatov KE (2016) Rock slides and rock avalanches of the Kokomeren River basin (Central Tien Shan). ICL Summer School Guidebook, IPL project, http://iplhq.org/icl/, p 131

  • Váně M (1960) Debris and landslides at the foot of the krušné hory Mts. Čas Min Geol 5(2):174–177

    Google Scholar 

  • Váně M (1985) Geologická stavba podkrušnohorského prolomu a jeho tektogeneze. Sbor Geol Věd, Geologie 40:147–181

    Google Scholar 

  • Viles HA, Goudie AS, Grab S, Lalley J (2011) The use of the Schmidt hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surf Process Landf 36(3):320–333

    Article  Google Scholar 

  • Vilímek V (1995) Quaternary development of Kateřinohorská Vault relief in the Krušné hory mountains. Acta Universitatis Carolinae, Geographica 30, Supplem:115–137

    Google Scholar 

  • Zapletal L (1954) Zbytky Komořanského jezera. Ochrana přírody 9(2):57–58

    Google Scholar 

  • Zmítko J (1983) Fosilní sesuvy při podkrušnohorském výchozu pánve. Zpravodaj Hnědé uhlí 6:12–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vilímek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burda, J., Veselý, M., Řehoř, M. et al. Reconstruction of a large runout landslide in the Krušné hory Mts. (Czech Republic). Landslides 15, 423–437 (2018). https://doi.org/10.1007/s10346-017-0881-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-017-0881-0

Keywords

Navigation