Skip to main content

Advertisement

Log in

Screening of Linum usitatissimum Lines Using Growth Attributes, Biochemical Parameters and Ionomics Under Salinity Stress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Salt stress causes plants to undergo metabolic and physiological disturbances, affecting growth, development, quality, and yield. With the increasing demand for food in the world and this environmental problem, the cultivation of salt-tolerant varieties or lines of crops is needed to compensate for the demands of food for mankind. This study was designed for salt tolerance problems; the four lines of Linum usitatissimum in terms of the plant’s agronomic attributes, yield, different metabolites (secondary and primary), antioxidant enzymatic activities, endogenous hormones, lipid peroxidation and ion analysis. This research was completely randomized-design (CRD) and four lines of flax (Alsi ARI-50, Alsi ARI-22, Alsi ARI-20 and Alsi ARI-1) were raised using water (control) and 150 mM NaCl in irrigation water. Salinity had a negative impact on different growth parameters, photosynthetic pigments-level (Chlorophyll a, Chlorophyll b, total chlorophyll and chlorophyll a/b ratio), Indole-3-acetic acid (IAA), and different essential ions. On the other hand, at the same salt concentrations, carotenoid content, sugar level, total protein, lipids, phenolic content, proline amount, flavonoid, tannin, β carotene, antioxidant level, lipid peroxidation, catalase activity, guaiacol peroxidase activity, ascorbic acid, salicylic acid, sodium and chloride ions significantly increased. Based on the present study, it was concluded that Alsi ARI-50 and Alsi ARI-22 showed higher salt tolerance compared to the other lines based on measured parameters. So, these lines are recommended to be used in the salinity area and also in the breeding programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelhamid MT, Shokr MM, Bekheta M (2010) Growth, root characteristics, and leaf nutrients accumulation of four faba bean (Vicia faba L.) cultivars differing in their broomrape tolerance and the soil properties in relation to salinity. Commun Soil Sci Plant Anal 41:2713–2728

    CAS  Google Scholar 

  • Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR (2022) Effect of biosorptive removal of cadmium ions from hydroponic solution containing indigenous garlic peel and mercerized garlic peel on lettuce productivity. Sci Hortic 293:110727

    CAS  Google Scholar 

  • Adams E, Shin R (2014) Transport, signaling, and homeostasis of potassium and sodium in plants. J Integr Plant Biol 56:231–249

    CAS  PubMed  Google Scholar 

  • Adhikari A, Khan MA, Lee KE, Kang SM, Dhungana SK, Bhusal N, Lee IJ (2020) The halotolerant rhizobacterium—Pseudomonas koreensis MU2 enhances inorganic silicon and phosphorus use efficiency and augments salt stress tolerance in soybean (Glycine max L.). Microorganisms 8:1256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad G, Khan AA, Mohamed HI (2021) Impact of the low and high concentrations of fly ash amended soil on growth, physiological response and yield of pumpkin (Cucurbita moschata Duch. Ex Poiret L.). Environ Sci Poll Res 28:17068–17083

    CAS  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Arshad M (2012) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Annals Microbiol 62:1321–1330

    CAS  Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Egamberdieva D, Bhardwaj R, Ashraf M (2017) Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. J Plant Interact 12:429–437

    CAS  Google Scholar 

  • Ahmed K, Kurnitski J, Olesen B (2017) Data for occupancy internal heat gain calculation in main building categories. Data Brief 15:1030–1034

    PubMed  PubMed Central  Google Scholar 

  • Akindahunsi A, Oyetayo F (2006) Nutrient and antinutrient distribution of edible mushroom, Pleurotus tuber-regium (fries) singer. LWT Food Sci Technol 39:548–553

    CAS  Google Scholar 

  • Alam M, Ahmed K, Mollah M, Tareq M, Alam J (2015) Effect of planting dates on the yield of mustard seed. Int J Appl Sci Biotechnol 3:651–654

    Google Scholar 

  • Alhasnawi AN (2019) β‑glucan-mediated Alleviation of NaCl Stress in Ocimum basilicum L. in Relation to the Response of Antioxidant Enzymes and Assessment DNA Marker. J Ecol Eng 20:90–99

    Google Scholar 

  • Ali Q, Ali A, Waseem M, Muzaffar A, Ahmad S, Ali S, Awan M, Samiullah T, Nasir I, Tayyab H (2014) Correlation analysis for morpho-physiological traits of maize (Zea mays L.). Life Sci J 11:9–13

    CAS  Google Scholar 

  • Amirjani M (2010) Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am J Plant Physiol 5:350–360

    CAS  Google Scholar 

  • Ashry NA, Ghonaim MM, Mohamed HI, Mogazy AM (2018) Physiological and molecular genetic studies on two elicitors for improving the tolerance of six Egyptian soybean cultivars to cotton leaf worm. Plant Physiol Biochem 130:224–234

    CAS  PubMed  Google Scholar 

  • Azad MOK, Kjaer KH, Adnan M, Naznin MT, Lim JD, Sung IJ, Park CH, Lim YS (2020) The evaluation of growth performance, photosynthetic capacity, and primary and secondary metabolite content of leaf lettuce grown under limited irradiation of blue and red LED light in an urban plant factory. Agriculture 10:28

    CAS  Google Scholar 

  • Baba SA, Malik SA (2014) Evaluation of antioxidant and antibacterial activity of methanolic extracts of Gentiana kurroo royle. Saudi J Biol Sci 21(5):493–498

    PubMed  PubMed Central  Google Scholar 

  • Babar S, Siddiqi EH, Hussain I, Hayat Bhatti K, Rasheed R (2014) Mitigating the effects of salinity by foliar application of salicylic acid in fenugreek. Physiol J. https://doi.org/10.1155/2014/869058

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Batool A, Ashraf M, Akram N, Al-Qurainy F (2013) Salt-induced changes in the growth, key physicochemical and biochemical parameters, enzyme activities, and levels of non-enzymatic anti-oxidants in cauliflower (Brassica oleracea L.). J Hortic Sci Biotechnol 88:231–241

    CAS  Google Scholar 

  • Bazrafshan A, Ehsanzadeh P (2014) Growth, photosynthesis and ion balance of sesame (Sesamum indicum L.) genotypes in response to NaCl concentration in hydroponic solutions. Photosynthetica 52:134–147

    CAS  Google Scholar 

  • Ben RK, Lefebvre-De Vos D, Le Disquet I, Leprince AS, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savouré A (2015) Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in A rabidopsis thaliana. New Phytol 208:1138–1148

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72(1-2):248–254

    CAS  PubMed  Google Scholar 

  • Brglez ME, Knez Hrnčič M, Škerget M, Knez Ž, Bren U (2016) Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 21:901

    Google Scholar 

  • Calado LM, Taryba MG, Carmezim MJ, Montemor MF (2018) Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy. Corros Sci 142:12–21

    CAS  Google Scholar 

  • Çamlica M, Yaldiz G (2017) Effect of salt stress on seed germination, shoot and root length in basil (Ocimum basilicum). Inter J Second Metab 4:69–76

    Google Scholar 

  • Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011) Salinity stress and salt tolerance. In: Abiotic stress in plants—Mechanisms and adaptations, vol 1, pp 21–38

    Google Scholar 

  • Chandlee JM, Scandalios JG (1984) Analysis of variants affecting the catalase developmental program in maize scutellum. Theoretical Appl Gene 69:71–77

    CAS  Google Scholar 

  • Choudhary S, Wani KI, Naeem M, Khan MM, Aftab T (2023) Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. J Plant Growth Regul 42(2):539–553

    CAS  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Svecova E, Rea E, Lucini L (2013) Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J Sci Food Agric 93:1119–1127

    CAS  PubMed  Google Scholar 

  • Corti E, Falsini S, Schiff S, Tani C, Gonnelli C, Papini A (2023) Saline stress impairs lipid storage mobilization during germination in Eruca sativa. Plants 12(2):366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa DC, Soldati AL, Pecchi G, Bengoa JF, Marchetti SG, Vetere V (2018) Preparation and characterization of a supported system of Ni2P/Ni12P5 nanoparticles and their use as the active phase in chemoselective hydrogenation of acetophenone. Nanotechnology 29:215702

    PubMed  Google Scholar 

  • Dawood MF, Sohag AA, Tahjib-Ul-Arif MD, Latef AA (2021) Hydrogen sulfide priming can enhance the tolerance of artichoke seedlings to individual and combined saline-alkaline and aniline stresses. Plant Physiol Biochem 159:347–362

    CAS  PubMed  Google Scholar 

  • Dawood MF, Abu-Elsaoud AM, Sofy MR, Mohamed HI, Soliman MH (2022a) Appraisal of kinetin spraying strategy to alleviate the harmful effects of UVC stress on tomato plants. Environ Sci Poll Res 29(35):52378–52398

    CAS  Google Scholar 

  • Dawood MF, Sofy MR, Mohamed HI, Sofy AR, Abdel-kader HA (2022b) Hydrogen sulfide modulates salinity stress in common bean plants by maintaining osmolytes and regulating nitric oxide levels and antioxidant enzyme expression. J Soil Sci Plant Nutri 22(3):3708–3726

    CAS  Google Scholar 

  • Dawood MF, Zaid A, Latef AAHA (2022c) Salicylic acid spraying-induced resilience strategies against the damaging impacts of drought and/or salinity stress in two varieties of Vicia faba L. seedlings. J Plant Growth Regul 41:1919–1942

    CAS  Google Scholar 

  • Debnath M, Ashwath N, Hill CB, Callahan DL, Dias DA, Jayasinghe NS, Midmore DJ, Roessner U (2018) Comparative metabolic and ionomic profiling of two cultivars of Stevia rebaudiana Bert.(Bertoni) grown under salinity stress. Plant Physiol Biochem 129:56–70

    CAS  PubMed  Google Scholar 

  • Dini C, Zaro MJ, Viña SZ (2019) Bioactivity and functionality of anthocyanins: A review. Curr Bioact Compd 15:507–523

    CAS  Google Scholar 

  • El-Beltagi HS, Mohamed HI, Abdelazeem AS, Youssef R, Safwat G (2019) GC-MS analysis, antioxidant, antimicrobial and anticancer activities of extracts from Ficus sycomorus fruits and leaves. Not Bot Horti Agrobo 47(2):493–505

    CAS  Google Scholar 

  • El-Beltagi HS, Ahmad I, Basit A, Shahta WF, Hassan U, Shah ST, Haleema B, Jalal A, Amin R, Khalid MA, Noor F, Mohamed HI (2022) Ascorbic acid enhance growth and yield of sweet peppers (Capsicum annum) by mitigating salinity stress. Gesunde Pflanz 74:423–433

    CAS  Google Scholar 

  • El-Far MM, Taie HA (2009) Antioxidant activities, total anthocyanins, phenolics and flavonoids contents of some sweetpotato genotypes under stress of different concentrations of sucrose and sorbitol. Aust J Basic Appl Sci 3:3609–3616

    CAS  Google Scholar 

  • El-Mahdy OM, Mohamed HI, Mogazy AM (2021) Biosorption effect of Aspergillus niger and Penicillium chrysosporium for Cd and Pb contaminated soil and their physiological effects on Vicia faba L. Environ Sci Poll Res 28(47):67608–67631

    CAS  Google Scholar 

  • El-Sabagh A, Sorour S, Ueda A, Saneoka H (2016) Evaluation of salinity stress effects on seed yield and quality of three soybean cultivars. Azarian J Agri 2(5):138–141

    Google Scholar 

  • Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470

    PubMed  PubMed Central  Google Scholar 

  • Farghaly FA, Radi AA, Abdel-Wahab DA, Hamada AM (2016) Effect of salinity and sodicity stresses on physiological response and productivity in Helianthus annuus. Acta Biol Hung 67:184–194

    CAS  PubMed  Google Scholar 

  • Fehr W, Caviness C, Burmood D, Pennington J (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill 1. Crop Sci 11:929–931

    Google Scholar 

  • Ferdous J, Mannan M, Haque M, Mamun M, Alam M (2018) Chlorophyll content, water relation traits and mineral ions accumulation in soybean as influenced by organic amendments under salinity stress. Aust J Crop Sci 12:1806–1812

    CAS  Google Scholar 

  • Fischer G, Melgarejo LM (2020) The ecophysiology of cape gooseberry (Physalis peruviana L.)—an Andean fruit crop. A review. Rev Colomb Cienc Hortíc 14:76–89

    Google Scholar 

  • Fouda H, Sofy M (2022) Effect of biological synthesis of nanoparticles from Penicillium chrysogenum as well as traditional salt and chemical nanoparticles of zinc on canola plant oil productivity and metabolic. Egypt J Chem 65(3):507–516

    Google Scholar 

  • Foyer C, Descourvieres P, Kunert K (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    CAS  Google Scholar 

  • Gallie DR (2013) L‑ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica 2013:1–24

    Google Scholar 

  • Gengmao Z, Yu H, Xing S, Shihui L, Quanmei S, Changhai W (2015) Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind Crops Prod 64:175–181

    Google Scholar 

  • Ghonaim MM, Mohamed HI, Omran AAA (2021) Evaluation of wheat salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet Resour Crop Evol 68:227–242

    CAS  Google Scholar 

  • Giannakoula AE, Ilias I (2013) The effect of water stress and salinity on growth and physiology of tomato (Lycopersicon esculentum Mil.). Arch Biol Sci 65:611–620

    Google Scholar 

  • Gomes MAC, Pestana IA, Santa-Catarina C, Hauser-Davis RA, Suzuki MS (2017) Salinity effects on photosynthetic pigments, proline, biomass and nitric oxide in Salvinia auriculata Aubl. Acta Limnol Bras 29:e9. https://doi.org/10.1590/S2179-975X4716

    Article  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goudarzi M, Pakniyat H (2009) Salinity causes increase in proline and protein contents and peroxidase activity in wheat cultivars. J Appl Sci 9:348–353

    CAS  Google Scholar 

  • Grotto D, Maria LS, Valentini J, Paniz C, Schmitt G, Garcia SC, Pomblum VJ, Rocha JBT, Farina M (2009) Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quím Nova 32:169–174

    CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. https://doi.org/10.1155/2014/701596

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamed MM, El-Mobdy AMA, Kamel MT, Mohamed HI, Bayoumi AE (2019) Phytochemical and biological activities of two asteraceae plants Senecio vulgaris and Pluchea dioscoridis L. Pharmacology 2:101–121

    CAS  Google Scholar 

  • Hao S, Wang Y, Yan Y, Liu Y, Wang J, Chen S (2021) A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae 7(6):132

    Google Scholar 

  • Havaux M (2014) Carotenoid oxidation products as stress signals in plants. Plant J 79:597–606

    CAS  PubMed  Google Scholar 

  • He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r‑cnn. In: Proceedings of the Proceedings of the IEEE international conference on computer vision, pp 2961–2969

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Google Scholar 

  • Herchi W, Bahashwan S, Sebei K, Saleh HB, Kallel H, Boukhchina S (2015) Effects of germination on chemical composition and antioxidant activity of flaxseed (Linum usitatissimum L) oil. Grasas y Aceites 66:e57–e57

    Google Scholar 

  • Hu S, Zhang M, Yang Y, Xuan W, Zou Z, Arkorful E, Chen Y, Ma Q, Jeyaraj A, Chen X (2020) A novel insight into nitrogen and auxin signaling in lateral root formation in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC Plant Biol 20:1–17

    Google Scholar 

  • Hussain M, Ahmad S, Hussain S, Lal R, Ul-Allah S, Nawaz A (2018) Rice in saline soils: physiology, biochemistry, genetics, and management. Adv Agron 148:231–287

    Google Scholar 

  • Imtiaz M, Rizwan MS, Mushtaq MA, Ashraf M, Shahzad SM, Yousaf B, Saeed DA, Rizwan M, Nawaz MA, Mehmood S (2016) Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: a review. J Environ Manag 183:521–529

    CAS  Google Scholar 

  • Jan AU, Hadi F, Nawaz MA, Rahman K (2017) Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). Plant Physiol Biochem 116:139–149

    CAS  PubMed  Google Scholar 

  • Jayarajan S, Sharma R (2021) Melatonin: A blooming biomolecule for postharvest management of perishable fruits and vegetables. Trends Food Sci Technol 116:318–328

    CAS  Google Scholar 

  • Jbir-Koubaa R, Charfeddine S, Ellouz W, Saidi MN, Drira N, Gargouri-Bouzid R, Nouri-Ellouz O (2015) Investigation of the response to salinity and to oxidative stress of interspecific potato somatic hybrids grown in a greenhouse. Plant Cell Tiss Organ Cult 120:933–947

    CAS  Google Scholar 

  • Jhala AJ, Hall LM (2010) Flax (Linum usitatissimum L.): current uses and future applications. Aust J Basic Appl Sci 4:4304–4312

    CAS  Google Scholar 

  • Kaddour R, Draoui E, Baâtour O, Mahmoudi H, Tarchoun I, Nasri N, Gruber M, Lachaâl M (2013) Assessment of salt tolerance of Nasturtium officinale R. Br. using physiological and biochemical parameters. Acta Physiol Plant 35:3427–3436

    CAS  Google Scholar 

  • Kajla P, Sharma A, Sood DR (2015) Flaxseed—a potential functional food source. J Food Sci Technol 52:1857–1871

    CAS  PubMed  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah Nosratabadi A (2018) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4:49–55

    Google Scholar 

  • Kavita K, Alka S (2010) Assessment of salinity tolerance of Vigna mungo var. Pu-19 using ex vitro and in vitro methods. Asian J Biotechnol 2:73–85

    Google Scholar 

  • Kaya C, Akram N, Ashraf M, Sonmez O (2018) Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Cereal Res Commun 46:67–78

    CAS  Google Scholar 

  • Kaya C, Ugurlar F, Ashraf M, Alam P, Ahmad P (2023) Nitric oxide and hydrogen sulfide work together to improve tolerance to salinity stress in wheat plants by upraising the AsA-GSH cycle. Plant Physiol Biochem 194:651–663

    CAS  PubMed  Google Scholar 

  • Khalid A, Aftab F (2020) Effect of exogenous application of IAA and GA3 on growth, protein content, and antioxidant enzymes of Solanum tuberosum L. grown in vitro under salt stress. In Vitro Cell Dev Biol 56:377–389

    CAS  Google Scholar 

  • Khan V, Umar S, Iqbal N (2023) Palliating salt stress in mustard through plant-growth-promoting rhizobacteria: regulation of secondary metabolites, osmolytes, antioxidative enzymes and stress ethylene. Plants 12(4):705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kordrostami M, Rabiei B, Kumleh HH (2017) Different physiobiochemical and transcriptomic reactions of rice (Oryza sativa L.) cultivars differing in terms of salt sensitivity under salinity stress. Environ Sci Poll Res 24:7184–7196

    CAS  Google Scholar 

  • Kumar PP, Kumaravel S, Lalitha C (2010) Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr J Biochem Res 4:191–195

    Google Scholar 

  • Li Q, Song J (2019) Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species. BMC Plant Biol 19:1–11

    Google Scholar 

  • Li Y, He N, Hou J, Xu L, Liu C, Zhang J, Wang Q, Zhang X, Wu X (2018) Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front Ecol Evol 6:64

    CAS  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: A review. Biochem Biophys Res Commun 495:286–291

    CAS  PubMed  Google Scholar 

  • Lim G‑H, Singhal R, Kachroo A, Kachroo P (2017) Fatty acid- and lipid-mediated signaling in plant defense. Annu Rev Phytopathol 55:505–536

    CAS  PubMed  Google Scholar 

  • Lim JH, Park KJ, Kim BK, Jeong JW, Kim HJ (2012) Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem 135L:1065–1070

    Google Scholar 

  • Long EO, Sik KH, Liu D, Peterson ME, Rajagopalan S (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol l31:227–258

    Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30

    Google Scholar 

  • Maclachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Can J Bot 41:1053–1062

    CAS  Google Scholar 

  • Maksoud MA, Bekhit M, El-Sherif DM, Sofy AR, Sofy MR (2022) Gamma radiation-induced synthesis of a novel chitosan/silver/Mn-Mg ferrite nanocomposite and its impact on cadmium accumulation and translocation in brassica plant growth. Int J Biol Macromol 194:306–316

    PubMed  Google Scholar 

  • Meng Y, Zhang L, Wang L, Zhou C, Shangguan Y, Yang Y (2019) Antioxidative enzymes activity and thiol metabolism in three leafy vegetables under Cd stress. Ecotoxicol Environ Saf 173:214–224

    CAS  PubMed  Google Scholar 

  • Mitsui A, Ohta T (1961) Photooxidative consumption and photoreductive formation of ascorbic acid in green leaves. Plant Cell Physiol 2:31–44

    CAS  Google Scholar 

  • Mohamed HI, Abdel-Hamid AME (2013) Molecular and biochemical studies for heat tolerance on four cotton genotypes (Gossypium hirsutum L.). Rom Biotechnol Lett 18(6):7223–7231

    Google Scholar 

  • Mohamed HI, El-Sayed AA, Rady MM, Caruso G, Sekara A, Abdelhamid MT (2021) Coupling effects of phosphorus fertilization source and rate on growth and Ion accumulation of common bean grown under salinity stress. PeerJ 9:e11463. https://doi.org/10.7717/peerj.11463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadi H, Hazrati S, Janmohammadi M (2019) Approaches to enhance antioxidant defense in plants. In: Approaches for enhancing abiotic stress tolerance in plants. CRC Press, pp 273–298

    Google Scholar 

  • Morsi EA, Ahmed HO, Abdel-Hady H, El-Sayed M, Shemis MA (2020) GC-analysis, and Antioxidant, Anti-inflammatory, and Anticancer Activities of Some Extracts and Fractions of Linum usitatissimum. Curr Bioact Compd 16:1306–1318

    CAS  Google Scholar 

  • Nagata M, Yamashita I (1992) Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi 39:925–928

    CAS  Google Scholar 

  • Nawaz F, Shehzad MA, Majeed S, Ahmad KS, Aqib M, Usmani MM, Shabbir RN (2020) Role of mineral nutrition in improving drought and salinity tolerance in field crops. Springer, Singapore, pp 129–147

    Google Scholar 

  • Negrão S, Schmöckel S, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    PubMed  Google Scholar 

  • Nordgren M, Fransen M (2014) Peroxisomal metabolism and oxidative stress. Biochimie 98:56–62

    CAS  PubMed  Google Scholar 

  • Noreen S, Siddiq A, Hussain K, Ahmad S, Hasanuzzaman M (2017) Foliar application of salicylic acid with salinity stress on physiological and biochemical attributes of sunflower (Helianthus annuus L.) crop. Acta Sci Pol Hortorum Cultus 16:57–74

    Google Scholar 

  • Parodi E, La Nasa J, Ribechini E, Petri A, Piccolo O (2023) Extraction of proteins and residual oil from flax (Linum usitatissimum), camelina (Camelina sativa), and sunflower (Helianthus annuus) oilseed press cakes. Biomass Conv Bioref 13(3):1915–1926

    CAS  Google Scholar 

  • Pathak J, Ahmed H, Kumari N, Pandey A, Sinha RP (2020) Role of calcium and potassium in amelioration of environmental stress in plants. In: Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives, pp 535–562

    Google Scholar 

  • Phillips I (1975) Apical dominance. Annu Rev Plant Physiol 26:341–367

    CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme J, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    CAS  PubMed  Google Scholar 

  • Prajapati S, Sharma SK, Kadwey S (2015) Salicylic acid a multifaceted hormone for vegetable crops—A review. Trends Biosci 8:1179–1185

    Google Scholar 

  • Pütter J (1974) Peroxidases. In: Methods of enzymatic analysis. Elsevier, pp 685–690

    Google Scholar 

  • Puvanitha S, Mahendran S (2017) Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Sch J Agric Vet Sci 4:126–131

    Google Scholar 

  • Ragaey MM, Sadak MS, Dawood MFA, Mousa NHS, Hanafy RS, Latef AAHA (2022) Role of signaling molecules sodium nitroprusside and arginine in alleviating salt-induced oxidative stress in wheat. Plants 11(14):1786. https://doi.org/10.3390/plants11141786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostampour P, Hamidian M, Dehnavi MM, Saeidimajd GA (2023) Evaluation of osmoregulation and morpho-physiological responses of Borago officinalis under drought and salinity stress with equal osmotic potential. Biochem Syst Ecol 106:104567

    CAS  Google Scholar 

  • Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24

    Google Scholar 

  • Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S (2020) Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 24:447–473

    PubMed  PubMed Central  Google Scholar 

  • Saleh S, Liu G, Liu M, Liu W, Gruda N, He H (2019) Reducing the salinity impact on soilless culture of tomatoes using supplemental Ca and foliar micronutrients. Acta Sci Pol Hortorum Cultus 18(3):187–200

    Google Scholar 

  • Sarker U, Islam MT, Oba S (2018) Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLoS ONE 13:e206388

    PubMed  PubMed Central  Google Scholar 

  • Sehrawat N, Yadav M, Bhat KV, Sairam RK, Jaiwal PK (2015) Effect of salinity stress on mungbean [Vigna radiata (L.) Wilczek] during consecutive summer and spring seasons. J Agric Sci Belgrade 60:23–32

    Google Scholar 

  • Shah SH, Houborg R, McCabe MF (2017) Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy 7:61

    Google Scholar 

  • Shahzad M, Witzel K, Zörb C, Mühling K (2012) Growth-related changes in subcellular ion patterns in maize leaves (Zea mays L.) under salt stress. J Agron Crop Sci 198:46–56

    CAS  Google Scholar 

  • Sheteiwy M, Ulhassan Z, Qi W, Lu H, AbdElgawad H, Minkina T, Sushkova S, Rajput VD, El-Keblawy A, Josko I, Sulieman S (2022) Association of jasmonic acid priming with multiple defense mechanisms in wheat plants under high salt stress. Front Plant Sci 16:2614

    Google Scholar 

  • Shim WB, Kim MJ, Mun H, Kim MG (2014) An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens Bioelectron 62:288–294

    CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    CAS  PubMed  Google Scholar 

  • Smeriglio A, Barreca D, Bellocco E, Trombetta D (2017) Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 174:1244–1262

    CAS  PubMed  Google Scholar 

  • Soetan K, Olaiya C, Oyewole O (2010) The importance of mineral elements for humans, domestic animals and plants—A review. Afr J Food Sci 4:200–222

    CAS  Google Scholar 

  • Sofy MR, Mohamed HI, Dawood MFA, Abu-Elsaoud AM, Soliman MH (2021) Integrated usage of Trichoderma harzianum and biochar to ameliorate salt stress on spinach plants. Arch Agron Soil Sci 68(14):2005–2026

    Google Scholar 

  • Sohrabi Y, Heidari G, Esmailpoor B (2008) Effect of salinity on growth and yield of Desi and Kabuli chickpea cultivars. Pak J Biol Sci 11:664–667

    PubMed  Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7:36–47

    CAS  Google Scholar 

  • Sonnewald U, Brauer M, von Schaewen A, Stitt M, Willmitzer L (1991) Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions. Plant J 1:95–106

    CAS  PubMed  Google Scholar 

  • Suh MC, Hahne G, Liu JR, Stewart CN (2015) Plant lipid biology and biotechnology. Plant Cell Rep 34:517–518

    CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  PubMed  Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Google Scholar 

  • Tammam AA, Rabei Abdel Moez Shehata M, Pessarakli M, El-Aggan WH (2023) Vermicompost and its role in alleviation of salt stress in plants–I. Impact of vermicompost on growth and nutrient uptake of salt-stressed plants. J Plant Nutr 46(7):1446–1457

    CAS  Google Scholar 

  • Tayde P, Andhare S, Taware P, Raut S, Yadav S (2018) To study effect of salinity on mungbean (Vigna radiata). Int J Curr Res Life Sci 7:1998–2000

    Google Scholar 

  • Tayefi-Nasrabadi H, Dehghan G, Daeihassani B, Movafegi A, Samadi A (2011) Some biochemical properties of guaiacol peroxidases as modified by salt stress in leaves of salt-tolerant and salt-sensitive safflower (Carthamus tinctorius L. cv.) cultivars. Afr J Biotechnol 10:751–763

    CAS  Google Scholar 

  • Torres-Olivar V, Villegas-Torres OG, Domínguez-Patiño ML, Sotelo-Nava H, Rodríguez-Martínez A, Melgoza-Alemán RM, Valdez-Aguilar LA, Alia-Tejacal I (2014) Role of nitrogen and nutrients in crop nutrition. J Agric Sci Technol B 4:29

    Google Scholar 

  • Tran NT, San ND (2016) The involvement of peroxidases in soybean seedlings’ defense against infestation of cowpea aphid. Arthropod Plant Interact 10:283–292

    Google Scholar 

  • Trouvelot S, Héloir MC, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trdá L, Daire X, Adrian M (2014) Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front Plant Sci 5:592

    PubMed  PubMed Central  Google Scholar 

  • Unlukara A, Demir I, Kesmez D, Çelikkol T, Demir K (2013) Seed yield and quality of pepper plants grown under salt stress. Afr J Biotechnol 12:6833–6836

    CAS  Google Scholar 

  • Van Handel E (1985) Rapid determination of total lipids in mosquitoes. J Am Mosq Control Assoc 1:302–304

    CAS  PubMed  Google Scholar 

  • Warrier V, Vieira M, Mole SE (2013) Genetic basis and phenotypic correlations of the neuronal ceroid lipofusinoses. Biochim Biophys Acta 1832:1827–1830

    CAS  PubMed  Google Scholar 

  • Waśkiewicz A, Muzolf-Panek M, Goliński P (2013) Phenolic content changes in plants under salt stress. In: Ecophysiology and responses of plants under salt stress. Springer, New York, pp 283–314

    Google Scholar 

  • Yang Z, Li JL, Liu LN, Xie Q, Sui N (2020) Photosynthetic regulation under salt stress and salt-tolerance mechanism of sweet sorghum. Front Plant Sci 10:1722

    PubMed  PubMed Central  Google Scholar 

  • Yarsi G, Sivaci A, Dasgan HY, Altuntas O, Binzet R, Akhoundnejad Y (2017) Effects of salinity stress on chlorophyll and carotenoid contents and stomata size of grafted and ungrafted galia C8 melon cultivar. Pak J Bot 49:421–426

    CAS  Google Scholar 

  • Yemm E, Willis A (1954) Stomatal movements and changes of carbohydrate in leaves of Chrysanthemum maximum. New Phytol 53:373–396

    CAS  Google Scholar 

  • Yen GC, Chen HY (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 43:27–32

    CAS  Google Scholar 

  • Zeb A, Murkovic M (2013) Pro-oxidant effects of β‑carotene during thermal oxidation of edible oils. J Am Oil Chem Soc 90:881–889

    CAS  Google Scholar 

  • Zhang R, Chen W (2014) Nitrogen-doped carbon quantum dots: facile synthesis and application as a “turn-off” fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron 55:83–90

    CAS  PubMed  Google Scholar 

  • Zhang HS, Qin FF, Qin P, Pan SM (2014) Evidence that arbuscular mycorrhizal and phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica: nutrient uptake and ion distribution within root tissues. Mycorrhiza 24:383–395

    PubMed  Google Scholar 

  • Zhang P, Senge M, Dai Y (2017) Effects of salinity stress at different growth stages on tomato growth, yield, and water-use efficiency. Commun Soil Sci Plant Anal 48:624–634

    Google Scholar 

  • Zheng ZP, Cheng KW, Chao J, Wu J, Wang M (2008) Tyrosinase inhibitors from paper mulberry (Broussonetia papyrifera). Food Chem 106:529–535

    CAS  Google Scholar 

  • Zhou Y, Tang N, Huang L, Zhao Y, Tang X, Wang K (2018) Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of schizonepeta tenuifolia briq. Int J Mol Sci 19:252

    PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34:455–472

    CAS  Google Scholar 

  • Zia-Ul-Haq M (2021) Historical and introductory aspects of carotenoids. In: Zia-Ul-Haq M, Dewanjee S, Riaz M (eds) Carotenoids: structure and function in the human body, pp 1–42

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; methodology, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; software, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; validation, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; formal analysis, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; investigation, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; resources, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; data curation, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; writing—original draft preparation, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; writing—review and editing, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; visualization, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; supervision, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; project administration, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF; funding acquisition, SP, HG, MR, HIM, KUR, HW, IA, STS, AB, MA, SA and SF. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Heba I. Mohamed.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Data availability

All data generated or analyzed during this study are included in this published article.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervaiz, S., Gul, H., Rauf, M. et al. Screening of Linum usitatissimum Lines Using Growth Attributes, Biochemical Parameters and Ionomics Under Salinity Stress. Gesunde Pflanzen 75, 2591–2609 (2023). https://doi.org/10.1007/s10343-023-00880-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00880-x

Keywords

Navigation