Skip to main content

Advertisement

Log in

Plant Growth Promoting Rhizobacteria (PGPR) Induced Improvements in the Growth, Photosynthesis, Antioxidants, and Nutrient Uptake of Rapeseed (Brassica napus L.)

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The use of microbial inoculants (biofertilizers) is a propitious technology for more sustainable farming systems in view of quickly declining macro and micronutrient reserves in the rhizosphere. To carry out an examination of the role of microbial inoculants, canola seeds were pre-treated with plant growth-promoting rhizobacteria (PGPR). Different bacterial species (Rhizobium species, Bacillus subtilis, Pseudomonas aeruginosa) were cultured in Luria Bertani (LB) medium and cells were picked after fractionation at 5000 rpm for 10 min and inoculum was prepared in sterilized distilled water at the concentration level of 108 cells per milliliter (108 CFU/mL). Healthy seeds of canola were dipped in PGPR suspensions of each treatment for about 30 min with continuous stirring at 100 rpm. Three bacterial species and their consortium were used for priming canola seeds prior to sowing in plastic pots. The growth, physiological and biochemical data of canola seedlings were recorded at the vegetative and maturity stage, while yield was recorded only at maturity stage after ~ 90 days. In a greenhouse experiment, inoculation (either with Rhizobium sp., Pseudomonas sp., Bacillus sp. or consortium) resulted in significantly higher shoot/root length (SL, RL), shoot fresh/dry weight (SFW, SDW), root fresh/dry weight (RFW, RDW) at both growth stages of canola. Particularly, at maturity stage the consortium treatment increased SL, RL, RFW, SDW, and RDW up to 23%, 109%, > 100%, 117%, and > 100%, respectively. Seed priming with consortium treatment significantly increased (> 100%) the efficiency of oxidant quenching enzymes (catalase; ascorbate peroxidase: superoxide dismutase; and peroxidase). The consortium treatment resulted in increase in number of siliqua/plant, the number of seeds per siliqua, 100 seed weight, and seed yield per plant upto 38%, 52%, 24%, and 38% respectively, compared to non-treated plants. This provides insights into the essential requirement of these PGPR on morphological, physiological, yield, and antioxidant potential of canola plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel Latef AAH, Omer AM, Badawy AA et al (2021) Strategy of salt tolerance and interactive impact of Azotobacter chroococcum and/or Alcaligenes faecalis inoculation on canola (Brassica napus L.) plants grown in saline soil. Plants 10:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Aini N, Yamika WSD, Ulum B (2019) Effect of nutrient concentration, PGPR and AMF on plant growth, yield, and nutrient uptake of hydroponic lettuce. Int J Agric Biol 21:175–183

    CAS  Google Scholar 

  • Al-Hazmi NE, Naguib DM (2022) Amylase properties and its metal tolerance during rice germination improved by priming with rhizobacteria. Rhizosphere 22:100518. https://doi.org/10.1016/j.rhisph.2022.100518

    Article  Google Scholar 

  • Aliabadi F, Hussein L, Mohammad H et al (2008) Effects of arbuscular mycorrhizal fungi, different levels of phosphorus and drought stress on water use efficiency, relative water content and proline accumulation rate of Coriander (Coriandrum sativum L.). J Med Plants Res 2:125–131

    Google Scholar 

  • de Aquino GS, Shahab M, Moraes LAC, Moreira A (2022) Plant growth promoting rhizobacteria increased canola yield and root system. J Plant Nutr 0:1–7. https://doi.org/10.1080/01904167.2022.2068441

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayuso-Calles M, Flores-Félix JD, Rivas R (2021) Overview of the role of rhizobacteria in plant salt stress tolerance. Agronomy 11:1759

    Article  CAS  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G et al (2018) Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 871:1–17. https://doi.org/10.3389/fpls.2018.01473

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Short Commun 207:205–207

    Google Scholar 

  • Bhat MA, Kumar V, Bhat MA et al (2020) Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Front Microbiol 11:1952

    Article  PubMed  PubMed Central  Google Scholar 

  • Chance B, Maehly AC (1955) [136] Assay of catalases and peroxidases

    Book  Google Scholar 

  • Chance B, Maely AC (1955) Assay of catalase and peroxidase methods. Enzymology 2:755–784

    Google Scholar 

  • Chen G-X, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant cell Physiol 30:987–998

    CAS  Google Scholar 

  • Chitra P, Jijeesh CM (2021) Biopriming of seeds with plant growth promoting bacteria Pseudomonas fluorescens for better germination and seedling vigour of the East Indian sandalwood. New For 52:829–841

    Article  Google Scholar 

  • Deshmukh AJ, Jaiman RS, Bambharolia RP, Patil VA (2020) Seed biopriming—a review. Int J Econ Plants 7:38–43

    Article  Google Scholar 

  • El Bouhssini M, Ogbonnaya FC, Ketata H et al (2011) Progress in host plant resistance in wheat to Russian wheat aphid (Hemiptera: Aphididae) in North Africa and West Asia. Aust J Crop Sci 5:1108–1113

    Google Scholar 

  • Ejaz M, Zhao B, Wang X et al (2021) Isolation and characterization of oil-degrading Enterobacter sp. from naturally hydrocarbon-contaminated soils and their potential use against the bioremediation of crude oil. Appl Sci 11:3504

    Article  CAS  Google Scholar 

  • Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102:7821–7835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhat F, Arfan M, Wang X et al (2022) The impact of bio-stimulants on Cd-stressed wheat (Triticum aestivum L.): insights into growth, chlorophyll fluorescence, Cd accumulation, and osmolyte regulation. Front Plant Sci 13:850567

    Article  PubMed  PubMed Central  Google Scholar 

  • Foo E, Plett JM, Lopez-Raez JA, Reid D (2019) The Role of plant hormones in plant-microbe symbioses. Front Plant Sci 10:1391

    Article  PubMed  PubMed Central  Google Scholar 

  • Forti C, Shankar A, Singh A et al (2020) Hydropriming and biopriming improve Medicago truncatula seed germination and upregulate DNA repair and antioxidant genes. Genes (Basel) 11:242

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol 59:315–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haider FU, Farooq M, Naveed M, et al (2022) Influence of biochar and microorganism co-application on stabilization of cadmium (Cd) and improved maize growth in Cd-contaminated soil. Front Plant Sci. https://doi.org/10.3389/fpls.2022.983830

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton PB, Van Slyke DD (1943) The gasometric determination of free amino acids in blood filtrates by the ninhydrin-carbon dioxide method. J Biol Chem 150:231–250. https://doi.org/10.1016/s0021-9258(18)51268-0

    Article  CAS  Google Scholar 

  • Handle EV (1968) Direct microdetermination of sucrose. Anal Biochem 22:280–283

    Article  Google Scholar 

  • Heidari M, Mousavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. J Agric Biol Sci 6:6–11

    Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801

    Article  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425

    Article  CAS  Google Scholar 

  • Khanna K, Jamwal VL, Gandhi SG et al (2019) Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9:1–14

    Article  Google Scholar 

  • Kohler J, Caravaca F, Carrasco L, Roldan A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag 22:298–304

    Article  Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B et al (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9:105011

    Article  Google Scholar 

  • Lay CY, Bell TH, Hamel C et al (2018) Canola root-Associated microbiomes in the Canadian Prairies. Front Microbiol 9:1188. https://doi.org/10.3389/fmicb.2018.01188

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Sun P, Zhang Y et al (2020) A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive genes expression. Environ Exp Bot 174:104023

    Article  CAS  Google Scholar 

  • Lin Y, Watts DB, Kloepper JW, Torbert HA (2018) Influence of plant growth-promoting rhizobacteria on corn growth under different fertility sources. Commun Soil Sci Plant Anal 49:1239–1255

    Article  CAS  Google Scholar 

  • Mehmood T, Liu C, Bibi I et al (2022) Recent developments in phosphate-assisted phytoremediation of potentially toxic metal (loid) s-contaminated soils. In: Pandey VC (ed) Assist Phytoremediation, 345–370. https://doi.org/10.1016/B978-0-12-822893-7.00014-8

    Chapter  Google Scholar 

  • Mitra D, Mondal R, Khoshru B et al (2021) Rhizobacteria mediated seed bio-priming triggers the resistance and plant growth for sustainable crop production. Curr Res Microb Sci 2:100071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress‐induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA et al (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Ormeño-Orrillo E, Menna P, Almeida LGP et al (2012) Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 13:1–26

    Article  Google Scholar 

  • Pandya M, Rajput M, Rajkumar S (2015) Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology 84:80–89

    Article  CAS  Google Scholar 

  • Park W, Kim KS, Lee JE, et al (2017) Effect of different application levels of rapeseed meal on growth and yield components of rice. Appl Biol Chem 60:403–410. https://doi.org/10.1007/s13765-017-0291-y

    Article  CAS  Google Scholar 

  • Pinnola A, Staleva-Musto H, Capaldi S et al (2016) Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens. Biochim Biophys Acta 1857:1870–1878

    Article  CAS  PubMed  Google Scholar 

  • Pintó-Marijuan M, Munné-Bosch S (2014) Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations. J Exp Bot 65:3845–3857

    Article  PubMed  Google Scholar 

  • Rouphael Y, Colla G (2018) Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front Plant Sci 9:1655

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabir A, Naveed M, Bashir MA et al (2020) Cadmium mediated phytotoxic impacts in Brassica napus: Managing growth, physiological and oxidative disturbances through combined use of biochar and Enterobacter sp. MN17. J Environ Manage 265:110522. https://doi.org/10.1016/j.jenvman.2020.110522

    Article  CAS  PubMed  Google Scholar 

  • Santos VB, Araújo ASF, Leite LFC et al (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231

    Article  CAS  Google Scholar 

  • Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377:111–126

    Article  CAS  Google Scholar 

  • Sharma P, Khanna V, Kumari P (2013) Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afr J Microbiol Res 7:5749–5757

    Article  CAS  Google Scholar 

  • Sinha RK, Valani D, Chauhan K, Agarwal S (2010) Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. J Agric Biotechnol Sustain Dev 2:113–128

    CAS  Google Scholar 

  • Stefan M, Munteanu N, Stoleru V et al (2013) Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Sci Hortic 151:22–29

    Article  Google Scholar 

  • de Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419. https://doi.org/10.1590/S1415-475738420150053

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas L, Singh I (2019) Microbial biofertilizers: types and applications. In: Biofertilizers for sustainable agriculture and environment. Springer, pp 1–19

    Book  Google Scholar 

  • Tulumello J, Chabert N, Rodriguez J et al (2021) Rhizobium alamii improves water stress tolerance in a non-legume. Sci Total Environ 797:148895. https://doi.org/10.1016/j.scitotenv.2021.148895

    Article  CAS  PubMed  Google Scholar 

  • Vejan P, Khadiran T, Abdullah R, Ahmad N (2021) Controlled release fertilizer: A review on developments, applications and potential in agriculture. J Control Release 339:321–334

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Ma B (2015) Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci Total Environ 512:415–427

    Article  PubMed  Google Scholar 

  • Yadav RS, Singh V, Pal S et al (2018) Seed bio-priming of baby corn emerged as a viable strategy for reducing mineral fertilizer use and increasing productivity. Sci Hortic (Amsterdam) 241:93–99

    Article  Google Scholar 

  • Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review. J Biotechnol Pharm Res 5:1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faisal Maqsood.

Ethics declarations

Conflict of interest

F. Farhat, A. Tariq, M. Waseem, A. Masood, S. Raja, W. Ajmal, I. Iftikhar, U. Zulfiqar and M. F. Maqsood declare that they have no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhat, F., Tariq, A., Waseem, M. et al. Plant Growth Promoting Rhizobacteria (PGPR) Induced Improvements in the Growth, Photosynthesis, Antioxidants, and Nutrient Uptake of Rapeseed (Brassica napus L.). Gesunde Pflanzen 75, 2075–2088 (2023). https://doi.org/10.1007/s10343-023-00845-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00845-0

Keywords

Navigation