Skip to main content
Log in

Hormonal and Physiological Changes in Miniature Roses (Rosa chinensis Jacq. var. minima Rehd.) Exposed to Water Deficit and Salinity Stress Conditions

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Abiotic stresses are the most harmful factors for plant growth and production. Drought and salinity are two major abiotic stresses that severely damage plant cells. They also change plant hormones like IAA, Zea, GA, and ABA. An investigation was conducted to examine the performance of miniature rose plants as landscape cultivars under salinity and water management. Three cultivars (‘Little Buckaroo’, ‘Sourati Local Cultivar’ and ‘Little Flirt’) received water deficit irrigation, with intervals of 2, 4, and 6 days, and 2 and 4 dS/m NaCl salinity. The results showed that severe water deficit and salinity stress reduced indoleacetic acid (IAA) and zeatin content in all cultivars, and the lowest IAA was observed in ‘Sourati Local Cultivar’. The ‘Little Flirt’ had the highest IAA at all salinity levels. The interaction of 6‑day irrigation interval and 4 dS/m salinity reduced gibberellic acid (GA) in all cultivars. ABA was increased with the highest salinity level, regardless of the irrigation interval. Overall, in most water deficit and salinity stress levels, zeatin and IAA were the highest in ‘Little Flirt’ and the lowest in ‘Sourati Local Cultivar’. In the highest level of salinity, ‘Sourati Local Cultivar’ had the most electrolyte leakage and the least relative water content. In addition, ‘Sourati Local Cultivar’ showed the least flower diameter, chlorophyll content and chlorophyll fluorescence in interaction of 4‑day irrigation intervals and 4 dS/m salinity. For all cultivars, 4 dS/m salinity in all irrigation treatments, reduced shoot fresh and dry weights. Therefore, it may be concluded that ‘Little Flirt’ was the most tolerant and ‘Sourati Local Cultivar’ was the most sensitive cultivars to drought and salinity stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed IM, Nadira UA, Bibi N, Zhang G, Wu F (2015) Tolerance to combined stress of drought and salinity in barley. Combined stresses in plants. Springer, pp 93–121

    Google Scholar 

  • Ali EF, Bazaid SA, Hassan FAS (2014) Salinity tolerance of Taif roses by gibberellic acid (GA3). Int J Sci Res 3(11):184–192

    Google Scholar 

  • Álvarez S, Sánchez-Blanco MJ (2015) Comparison of individual and combined effects of salinity and deficit irrigation on physiological, nutritional and ornamental aspects of tolerance in Callistemon laevis plants. J Plant Physiol 185:65–74

    Article  PubMed  Google Scholar 

  • Álvarez S, Bañón S, Sánchez-Blanco MJ (2013) Regulated deficit irrigation in different phenological stages of potted geranium plants: water consumption water relations and ornamental quality. Acta Physiol Plant 35(4):1257–1267. https://doi.org/10.1007/s11738-012-1165-x

    Article  Google Scholar 

  • Arji I, Arzani K, Ebrahimzadeh H, Asghari R (2003) Effect of drought stress on physiological, morphological and biochemical characteristics of some olive cultivars. Doctoral dissertation, Tarbiat Modares University

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Bandeoğlu E, Eyidoğan F, Yücel M, Avni Öktem H (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42(1):69–77

    Article  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15(3):413–428

    Article  Google Scholar 

  • Bhanuprakash K, Yogeesha H (2016) Seed priming for abiotic stress tolerance: an overview. In: Abiotic stress physiology of horticultural crops, pp 103–117

    Chapter  Google Scholar 

  • Brandt B, Munemasa S, Wang C, Nguyen D, Yong T, Yang PG, Schroeder JI (2015) Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells. elife 4:1–25

  • Brault M, Maldiney R (1999) Mechanisms of cytokinin action. Plant Physiol Biochem 37:403–412

    Article  CAS  Google Scholar 

  • Cai X, Niu G, Starman T, Hall C (2014) Response of six garden roses (Rosa× hybrida L.) to salt stress. Sci Hortic 168:27–32

    Article  CAS  Google Scholar 

  • Chastain DR, Snider JL, Collins GD, Perry CD, Whitaker J, Byrd SA (2014) Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. J Plant Physiol 171(17):1576–1585

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Claeys H, Skirycz A, Maleux K, Inzé D (2012) DELLA signaling mediates stress-induced cell differentiation in Arabidopsis leaves through modulation of anaphase-promoting complex/cyclosome activity. Plant Physiol 159:739–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar NA, Amin I, Wani W, Wani SA, Shikari AB, Wani SH, Masoodi KZ (2017) Abscisic acid: A key regulator of abiotic stress tolerance in plants. Plant Gene 11:106–111

    Article  CAS  Google Scholar 

  • De Pascale S, Martino A, Raimondi G, Maggio A (2007) Comparative analysis of water and salt stress-induced modifications of quality parameters in cherry tomatoes. J Hortic Sci Biotechnol 82(2):283–289

    Article  Google Scholar 

  • Dodd IC (2005) Root-to-shoot signalling: assessing the roles of ‘up’in the up and down world of long-distance signalling in planta. Plant Soil 274(1):251–270

    Article  CAS  Google Scholar 

  • Dunlap JR, Binzel ML (1996) NaCI reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol 112:379–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faghih S, Zamani Z, Fatahi R, Omidi M (2021) Infuence of kaolin application on most important fruit and leaf characteristics of two apple cultivars under sustained defcit irrigation. Biol Res 54(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi MA, Fujita MA, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Yong JWH, Tan SN, Yang XH, Ong ES (2004) Analysis of some cytokinins in coconut (Cocos nucifera L.) water by micellar electrokinetic capillary chromatography after solid-phase extraction. J Chromatogr A 1048:119–126

    Article  CAS  PubMed  Google Scholar 

  • Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot 59:3039–3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerfel M, Ouni Y, Boujnah D, Zarrouk M (2009) Photosynthesis parameters and activities of enzymes of oxidative stress in two young ‘Chemlali’ and ‘Chetoui’ olive trees under water deficit. Photosynt 47(3):340–346. https://doi.org/10.1007/s11099-009-0054-z

    Article  CAS  Google Scholar 

  • Havlov AM, Dobrev PI, Motyka V, Štorchová H, Libus J, Dobr AJ, Malbeck J, Gaudinov AA, Vankov AR (2008) The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O‑glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ 31:341–353

    Article  Google Scholar 

  • Idrees M, Khan MMA, Aftab T, Naeem M, Hashmi N (2010) Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress. J Plant Interact 5(4):293–303

    Article  CAS  Google Scholar 

  • Institute S 2013 SAS Institute Inc. Using JMP 11, SAS Institute Inc, Cary, NC

  • Javid MG, Sorooshzadeh A, Moradi F, Modarres Sanavy SAM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jia W, Wang Y, Zhang S, Zhang J (2002) Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots. J Exp Bot 53(378):2201–2206

    Article  CAS  PubMed  Google Scholar 

  • Katsoulas N, Kittas C, Dimokas G, Lykas C (2006) Effect of irrigation frequency on rose flower production and quality. Biosyst Eng 93(2):237–244

    Article  Google Scholar 

  • Kiani SP, Maury P, Sarrafi A, Grieu P (2008) QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 175(4):565–573

    Article  Google Scholar 

  • Kim T‑H, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkham MB (2005) Principles of soil and plant water relations. Elsevier, Burlington, p 555

    Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y, Vankova R, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran L‑SP (2012) Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. PLoS ONE 7:e42411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Kang Y, Wan S, Chen X, Xu J (2015) Effect of drip-irrigation with saline water on Chinese rose (Rosa chinensis) during reclamation of very heavy coastal saline soil in a field trial. Sci Hortic 186:163–171

    Article  CAS  Google Scholar 

  • Li X‑J, Yang M‑F, Chen H, Qu L‑Q, Chen F, Shen S‑H (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochimica et Biophysica Acta (BBA)-Proteins and. Proteomics 1804:929–940

    CAS  Google Scholar 

  • Liu Y, Zhang X, Tran H, Shan L, Kim J, Childs K, Ervin EH, Frazier T, Zhao B (2015) Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. Biotechnol Biofuels 8:1–18

    Article  Google Scholar 

  • Liu Y, Ji D, Turgeon R, Chen J, Lin T, Huang J, Luo J, Zhu Y, Zhang C, Lv Z (2019) Physiological and proteomic responses of Mulberry Trees (Morus alba. L.) to combined salt and drought stress. Int J Mol Sci 20:2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Neumann PM (1998) Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition. J Exp Bot 49(329):1945–1952

    Article  CAS  Google Scholar 

  • Ma Z, Ge L, Lee AS, Yong JWH, Tan SN, Ong ES (2008) Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography—tandem mass spectrometry after solid-phase extraction. Anal Chim Acta 610:274–281

    Article  CAS  PubMed  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37(5):720–729

  • Masia A, Pitacco A, Braggio L, Giulivo C (1994) Hormonal responses to partial drying of the root system of Helianthus annuus. J Exp Bot 45:69–76

    Article  CAS  Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—A practical guide. EXBOTJ 51(345):659–668

    Article  CAS  Google Scholar 

  • Momenpour A, Imani A, Bakhshi D, Rezaei H (2015) Evaluation of salinity tolerance in some almond genotypes grafted on GF677 rootstock base on morphological characteristic and chlorophyll fluorescence. J Plant Process Funct 3(10):9–28

    Google Scholar 

  • Murti G, Upreti K (2007) Plant growth regulators in water stress tolerance. J Hortic Sci 2:73–93

    Article  Google Scholar 

  • Nankishore A, Farrell AD (2016) The response of contrasting tomato genotypes to combined heat and drought stress. J Plant Physiol 202:75–82

    Article  CAS  PubMed  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environ Exp Bot 58(1–3):106–113. https://doi.org/10.1016/j.envexpbot.2005.06.021

    Article  CAS  Google Scholar 

  • Niu G, Rodriguez DS (2008) Responses of growth and ion uptake of four rose rootstocks to chloride-or sulfate-dominated salinity. J Am Soc Hortic Sci 133:663–669

    Article  Google Scholar 

  • Omidi M, Khandan-Mirkohi A, Kafi M, Zamani Z, Ajdanian L, Babaei M (2022) Biochemical and molecular responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC Plant Biol 22(1):1–20

    Article  Google Scholar 

  • Park HJ, Kim WY, Yun DJ (2016) A new insight of salt stress signaling in plant. Mol Cells 39(6):447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillay I, Beyl C (1990) Early responses of drought-resistant and-susceptible tomato plants subjected to water stress. J Plant Growth Regul 9:213–219

    Article  CAS  Google Scholar 

  • Rao NS, Laxman R, Shivashankara K (2016) Physiological and morphological responses of horticultural crops to abiotic stresses. In: Abiotic stress physiology of horticultural crops. Springer, pp 3–17

    Chapter  Google Scholar 

  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37:1059–1073

    Article  CAS  PubMed  Google Scholar 

  • Sade N, del Mar Rubio-Wilhelmi M, Umnajkitikorn K, Blumwald E (2018) Stress-induced senescence and plant tolerance to abiotic stress. J Exp Bot 69:845–853

    Article  CAS  PubMed  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plant: Causes, consequences and tolerance. In: Drought stress tolerance in plants, vol 1, pp 1–16

    Google Scholar 

  • Satisha J, Prakash G, Murti G, Upreti K (2005) Response of grape genotypes to water deficit: Root, shoot, growth and endogenous hormones. Indian J Plant Physiol 10:225

    CAS  Google Scholar 

  • Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2014) Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Planta 153:284–298

    Article  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Umar M, Uddin Z, Siddiqui Z (2019) Responses of photosynthetic apparatus in sunflower cultivars to combined drought and salt stress. Photosynthetica 57:627–639

    Article  CAS  Google Scholar 

  • Upreti K, Sharma M (2016) Role of plant growth regulators in abiotic stress tolerance. Abiotic stress physiology of horticultural crops. Springer, Heidelberg, Berlin, pp 19–46

    Book  Google Scholar 

  • Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57(1):201–212

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Zhu J-K (2005) (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Transact 33(2):375–379. https://doi.org/10.1042/BST0330375

    Article  CAS  Google Scholar 

  • Veselova S, Farkhutdinov R, Veselov D, Kudoyarova G (2006) Role of cytokinins in the regulation of stomatal conductance of wheat seedlings under conditions of rapidly changing local temperature. Russ J Plant Physiol 53:756–761

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Köllmer I, Bartrina I, Holst K, Schmülling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8:371–381

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Liu J, Poree F, Schaeufele R, Helmke H, Frackenpohl J, Lehr S, von Koskull-Döring P, Christmann A, Schnyder H (2019) Abscisic acid receptors and coreceptors modulate plant water use efficiency and water productivity. Plant Physiol 180:1066–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawaski C, Busov VB (2014) Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS ONE 9:e86217

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Gao H, Li YH, Wang L, Kong DS, Guo YY, Lu YL (2019) Effect of water stress on photosynthesis, chlorophyll fluorescence parameters and water use efficiency of common reed in the Hexi Corridor. Russ J Plant Physiol 66(4):556–563

    Article  Google Scholar 

  • Zhou R, Yu X, Ottosen CO, Rosenqvist E, Zhao L, Wang Y, Yu W, Zhao T (2017) Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol 17:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zörb C, Geilfus C‑M, Mühling KH, Ludwig-Müller J (2013) The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J Plant Physiol 170:220–224

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Department of Horticulture Science, Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Shahbani.

Ethics declarations

Conflict of interest

Z. Shahbani, M. Kosh-Khui, H. Salehi, M. Kafi, A.A.K. Haghighi, S. Eshghi and M. Omidi declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbani, Z., Kosh-Khui, M., Salehi, H. et al. Hormonal and Physiological Changes in Miniature Roses (Rosa chinensis Jacq. var. minima Rehd.) Exposed to Water Deficit and Salinity Stress Conditions. Gesunde Pflanzen 75, 1781–1797 (2023). https://doi.org/10.1007/s10343-022-00813-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00813-0

Keywords

Navigation