Skip to main content

Advertisement

Log in

Physiological and Biochemical Evaluation of Commercial Oilseed Rape (Brassica Napus L.) Cultivars Under Drought Stress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Crop production worldwide is affected by the water deficit. Drought is a long irregular dry period, which happens in an area when it consistently receives below-average precipitation. In this study, impact of drought stress (irrigation after 80 (normal or control irrigation) and 160 (stress condition) mm evaporation from class A pan) on the growth and productivity of four oilseed rape (Brassica napus L.) cultivars (Oise, Triangle, Karun, and SLM046) was evaluated during 2011 growing seasons at the research farm of Yazd Agricultural and Natural Resources Research Center of Iran. Drought stress reduced seed and oil yield in all cultivars. The lowest and highest seed yield under drought stress was observed in Oise and SLM046 cultivars, respectively. The SLM046 cultivar had the lowest reduction of seed (27%) and oil (33%) yields under drought stress, compared to the control condition. On the other hand, the highest reductions of seed (57%) and oil yields (60%) under drought stress were observed in the Triangle cultivar (compared to the control condition). The SLM046 had the highest SPAD value, stomatal conductance (especially in early days of drought stress), proline, and leaf water content under drought stress, compared to other cultivars. Moreover, antioxidative activities (catalase and peroxidase activities) under drought stress were much higher in the SLM046 cultivar, which helped this cultivar to conquer oxidative stress under drought conditions. Overall, results indicated that the SLM046 cultivar is a drought-tolerant cultivar with excellent physiological performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedi T, Pakniyat H (2010) Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J Genet Plant Breed 46(1):27–34

    CAS  Google Scholar 

  • Aliyari Rad S, Dehghanian Z, Asgari Lajayer B, Nobaharan K, Astatkie T (2021) Mitochondrial respiration and energy production under some abiotic stresses. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10512-1

    Article  Google Scholar 

  • AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82: 1227–1238

    CAS  Google Scholar 

  • Attia Z, Pogoda CS, Reinert S, Kane NC, Hulke BS (2021) Breeding for sustainable oilseed crop yield and quality in a changing climate. Theor Appl Genet 134:1817-1827. https://doi.org/10.1007/s00122-021-03770-w

    Article  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40:4–10

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalases and peroxidases. Meth Enzymol 2:764-775. https://doi.org/10.1016/S0076-6879(55)02300-8

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  PubMed  Google Scholar 

  • Cherian DA, Peter T, Narayanan A, Madhavan SS, Achammada S, Vynat GP (2019) Malondialdehyde as a marker of oxidative stress in periodontitis patients. J Pharm Bioall Sci 11:S297

    CAS  Google Scholar 

  • Clausen J, Kozlowski T (1965) Use of the relative turgidity technique for measurement of water stresses in gymnosperm leaves. Can J Bot 43:305–316

    Google Scholar 

  • Delkhosh B, Shirani-Rad AH, Mohammadi NG, Darvish F (2006) Effect of drought stress on grain yield and chlorophyll in rapessed cultivars. J Agric Sci 12:359–367

    Google Scholar 

  • Dien DC, Mochizuki T, Yamakawa T (2019) Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in rice (Oryza sativa L.) varieties. Plant Prod Sci 22:530–545

    CAS  Google Scholar 

  • Din J, Khan S, Ali I, Gurmani A (2011) Physiological and agronomic response of canola varieties to drought stress. J Anim Plant Sci 21:78–82

    Google Scholar 

  • Djaman K, O’Neill M, Owen C, Smeal D, West M, Begay D, Angadi SV, Koudahe K, Allen S, Lombard K (2018) Seed yield and water productivity of irrigated winter canola (Brassica napus L.) under semiarid climate and high elevation. Agronomy 8:90

    Google Scholar 

  • Du Y, Zhao Q, Chen L, Yao X, Zhang W, Zhang B, Xie F (2020) Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiol Biochem 146:1–12

    CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Fard NS, Abad HHS, Rad AS, Heravan EM, Daneshian J (2018) Effect of drought stress on qualitative characteristics of canola cultivars in winter cultivation. Ind Crop Prod 114:87–92

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi NSMA, Fujita DBSMA, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Google Scholar 

  • Ghaffari G, Toorchi M, Aharizad S, Shakiba M‑R (2011) Evaluation of traits related to water deficit stress in winter rapeseed cultivars. Univ J Environ Res Technol 7: 49-56

    Google Scholar 

  • Ghaffari H, Tadayon MR, Bahador M, Razmjoo J (2021) Investigation of the proline role in controlling traits related to sugar and root yield of sugar beet under water deficit conditions. Agric Water Manag 243:106448

    Google Scholar 

  • Ghassemi S, Delangiz N, Asgari Lajayer B, Saghafi D, Maggi F (2021) Review and future prospects on the mechanisms related to cold stress resistance and tolerance in medicinal plants. Acta Ecol Sinica 1(2):120–129

    Google Scholar 

  • Gyawali S, Parkin IA, Steppuhn H, Buchwaldt M, Adhikari B, Wood R, Wall K, Buchwaldt L, Singh M, Bekkaoui D (2019) Seedling, early vegetative, and adult plant growth of oilseed rapes (Brassica napus L.) under saline stress. Can J Plant Sci 99:927–941

    Google Scholar 

  • Hartman S, Sasidharan R, Voesenek LA (2021) The role of ethylene in metabolic acclimations to low oxygen. New Phytol 229:64–70

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Google Scholar 

  • Heuer B (1999) Osmoregulatory role of proline in plants exposed to environmental stresses. Handb Plant Crop Stress 2:675–695

    Google Scholar 

  • Hmidi D, Abdelly C, H‑u‑R AAM, Messedi D (2018) Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. Physiol Mol Biol Plants 24:1017–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Hua W, Yin Y, Zhang X, Liu L, Shi J, Zhao Y, Qin L, Chen C, Wang H (2017) Rapeseed research and production in China. Crop J 5:127–135

    Google Scholar 

  • Hussain HA, Hussain S, Khaliq A, Ashraf U, Anjum SA, Men S, Wang L (2018) Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Front Plant Sci 9:393

    PubMed  PubMed Central  Google Scholar 

  • Islam M, Kim JW, Begum M, Sohel M, Taher A, Lim Y‑S (2020) Physiological and biochemical changes in sugar beet seedlings to confer stress adaptability under drought condition. Plants 9:1511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen C, Mogensen V, Mortensen G, Fieldsend J, Milford G, Andersen M, Thage J (1996) Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crop Res 47:93–105

    Google Scholar 

  • Keipp K, Hütsch BW, Ehlers K, Schubert S (2020) Drought stress in sunflower causes inhibition of seed filling due to reduced cell-extension growth. J Agron Crop Sci 206:517–528

    CAS  Google Scholar 

  • Khadem Moghadam N, Hatami M, Rezaei S, Bayat M, Asgari Lajayer B (2019) Induction of plant defense machinery against nanomaterials exposure. In: Ghorbanpour M, Wani SH (eds) Advances in phytonanotechnology: from synthesis to application. Elsevier, https://doi.org/10.1016/B978-0-12-815322-2.00010-9

  • Khadem Moghadam N, Motesharezadeh B, Maali-Amiri R, Asgari Lajayer B, Astatkie T (2020) Effects of potassium and zinc on physiology and chlorophyll fluorescence of two cultivars of canola grown under salinity stress. Arab J Geosci 13(16):1–8

    Google Scholar 

  • Khaleghi A, Naderi R, Brunetti C, Maserti BE, Salami SA, Babalar M (2019) Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci Rep 9:1–12

    Google Scholar 

  • Khalili M, Naghavi MR, Aboughadareh AP, Talebzadeh SJ (2012) Evaluating of drought stress tolerance based on selection indices in spring canola cultivars (Brassica napus L.). J Agric Sci 4:78

    Google Scholar 

  • Khodabin G, Tahmasebi-Sarvestani Z, Rad AHS, Modarres-Sanavy SAM (2020) Effect of drought stress on certain morphological and physiological characteristics of a resistant and a sensitive canola cultivar. Chem Biodivers 17:e1900399

    CAS  PubMed  Google Scholar 

  • Koroi S (1989) Gel elektrophers tische and spectral photometrischoe under uchungen zomein fiuss der temperature auf straktur and aktritat der amylase and peroxidase isoenzyme. Physiol J 20:15–23

    Google Scholar 

  • Laxa M, Liebthal M, Telman W, Chibani K, Dietz K‑J (2019) The role of the plant antioxidant system in drought tolerance. Antioxidants 8:94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Qin X, Qi J, Dou W, Dunand C, Chen S, He Y (2020) CsPrx25, a class III peroxidase in Citrus sinensis, confers resistance to citrus bacterial canker through the maintenance of ROS homeostasis and cell wall lignification. Hortic Res 7:1–11

    PubMed  PubMed Central  Google Scholar 

  • Li R, Li M, Ashraf U, Liu S, Zhang J (2019) Exploring the relationships between yield and yield-related traits for rice varieties released in China from 1978 to 2017. Front Plant Sci 10:543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep 5:13033. https://doi.org/10.1038/srep13033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohani N, Jain D, Singh MB, Bhalla PL (2020) Engineering multiple abiotic stress tolerance in canola, Brassica napus. Front Plant Sci 11:3

    PubMed  PubMed Central  Google Scholar 

  • Mahajan MA, Samuels HH (2005) Nuclear hormone receptor coregulator: role in hormone action, metabolism, growth, and development. Endocr Rev 26:583–597

    CAS  PubMed  Google Scholar 

  • Mardeh AS‑S, Ahmadi A, Poustini K, Mohammadi V (2006) Evaluation of drought resistance indices under various environmental conditions. Field Crop Res 98:222–229

    Google Scholar 

  • Maroufpour N, Mousavi M, Hatami M, Rasoulnia A, Asgari Lajayer B (2019) Mechanisms involved in stimulatory and toxicity effects of nanomaterials on seed germination and early seedling growth. In: Ghorbanpour M, Wani SH (eds) Advances in phytonanotechnology: from synthesis to application. Elsevier, https://doi.org/10.1016/B978-0-12-815322-2.00006-7

  • Mendham N, Salisbury P (1995) Physiology: crop development, growth and yield. In: Kimber D, McGregor DI (eds) Brassica oilseeds production and utilization. CAB International, Wallingford, pp 11–64

    Google Scholar 

  • Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S (2018) Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep 8:1–18

    CAS  Google Scholar 

  • Morales M, Munné-Bosch S (2019) Malondialdehyde: facts and artifacts. Plant Physiol 180:1246–1250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537

    PubMed  PubMed Central  Google Scholar 

  • Pasban EB (2009) Evaluation of physiological indices, yield and its components as screening techniques for water deficit tolerance in oilseed rape cultivars. J Agr Sci Tech 11:413–422

    Google Scholar 

  • Pickles BJ, Simard SW (2017) Mycorrhizal networks and forest resilience to drought. Mycorrhizal mediation of soil. Elsevier, pp 319–339

    Google Scholar 

  • Qayyum A, Razzaq A, Ahmad M, Jenks MA (2011) Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat (Triticum aestivum L.) genotypes. Afr J Biotech 10:14038–14045

    CAS  Google Scholar 

  • Rad AHS, Abbasian A (2011) Evaluation of drought tolerance in winter rapeseed cultivars based on tolerance and sensitivity indices. Zemdirbyste (Agriculture) 98:41–48

    Google Scholar 

  • Rafi ZN, Kazemi F, Tehranifar A (2019) Effects of various irrigation regimes on water use efficiency and visual quality of some ornamental herbaceous plants in the field. Agric Water Manag 212:78–87

    Google Scholar 

  • Ranabhat G, Tiwari P, Dhakal A, Oli P, Chapagain A, Neupane S (2021) Effect of sowing dates on different rapeseed varieties under rain fed condition. J Agric Nat Res 4:176–190

    CAS  Google Scholar 

  • Rashtbari M, Alikhani HA (2012) Effect and efficiency of municipal solid waste compost and vermicompost on morpho-physiological properties and yield of canola under drought stress conditions. J Agr Sci Sustain Prod 22(2):113–127

    Google Scholar 

  • Ren J, Sun LN, Zhang QY, Song XS (2016) Drought tolerance is correlated with the activity of antioxidant enzymes in Cerasus humilis seedlings. Biomed Res Int 9851095. https://doi.org/10.1155/2016/9851095

  • Rezayian M, Niknam V, Ebrahimzadeh H (2018) Effects of drought stress on the seedling growth, development, and metabolic activity in different cultivars of canola. Soil Sci Plant Nutr 64:360–369

    CAS  Google Scholar 

  • Saghafi D, Ghorbanpour M, Shirafkan Ajirloo H, Asgari Lajayer B (2019) Enhancement of growth and salt tolerance in Brassica napus L. seedlings by halotolerant Rhizobium strains containing ACC-deaminase activity. Plant Physiol Rep 24(2):225–235. https://doi.org/10.1016/j.eti.2020.101323

    Article  CAS  Google Scholar 

  • Samadi S, Asgari Lajayer B, Moghiseh E, Rodríguez-Couto S (2021) Effect of carbon nanomaterials on cell toxicity, biomass production, nutritional and active compound accumulation in plants. Environ Technol Innov 21:101323

    CAS  Google Scholar 

  • Sarker U, Oba S (2018) Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep 8:1–12

    Google Scholar 

  • Sayfzadeh S, Rashidi M (2011) Response of antioxidant enzymes activities of sugar beet to drought stress. J Agric Biol Sci 6:27–33

    Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selote DS, Khanna-Chopra R (2004) Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiol Plant 121:462–471

    CAS  Google Scholar 

  • Shah TM, Imran M, Atta BM, Ashraf MY, Hameed A, Waqar I, Shafiq M, Hussain K, Naveed M, Aslam M (2020) Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials. BMC Plant Biol 20:1–16

    CAS  Google Scholar 

  • Smirnoff N (2008) Antioxidants and reactive oxygen species in plants. John Wiley & Sons, Oxford, pp 1–320

    Google Scholar 

  • Tahkokorpi M (2010) Anthocyanins under drought and drought-related stresses in bilberry (Vaccinium myrtillus L.). Acta Univ Ouluensis A Sci Rerum Nat 556:1–46

    Google Scholar 

  • Tátrai ZA, Sanoubar R, Pluhár Z, Mancarella S, Orsini F, Gianquinto G (2016) Morphological and physiological plant responses to drought stress in Thymus citriodorus. Int J Agron 10:1–8

    Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    CAS  PubMed  Google Scholar 

  • Yadav R, Bhushan C (2001) Effect of moisture stress on growth and yield in rice genotypes. Ind J Agric Res 35:104–107

    Google Scholar 

  • Yarnia M, Arabifard N, Khoei FR, Zandi P (2011) Evaluation of drought tolerance indices among some winter rapeseed cultivars. Afr J Biotechnol 10:10914–10922

    Google Scholar 

  • Živanović B, Milić Komić S, Tosti T, Vidović M, Prokić L, Veljović Jovanović S (2020) Leaf soluble sugars and free amino acids as important components of abscisic acid—mediated drought response in tomato. Plants 9:1147

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally for the conception and writing of the manuscript. All authors critically revised the manuscript and approved of the final version.

Corresponding author

Correspondence to Behnam Asgari Lajayer.

Ethics declarations

Conflict of interest

A. Jamshidi Zinab, T. Hasanloo, A.M. Naji, N. Delangiz, S. Farhangi-Abriz, B. Asgari Lajayer, A. Hemati, Z.-S. Shobbar and M. Farooq declare that they have no competing interests.

Additional information

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Supplementary Information

10343_2022_755_MOESM1_ESM.docx

Supplementary data to this article contains information about Physical and chemical properties of the experimental field soil and climatic features during the experimental site, the detail of irrigation schedule

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi Zinab, A., Hasanloo, T., Naji, A.M. et al. Physiological and Biochemical Evaluation of Commercial Oilseed Rape (Brassica Napus L.) Cultivars Under Drought Stress. Gesunde Pflanzen 75, 847–860 (2023). https://doi.org/10.1007/s10343-022-00755-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00755-7

Keywords

Navigation