Skip to main content
Log in

Beneficial Effect of Melatonin on Growth and Chlorophyll Content in Wheat (Triticum aestivum L.) Grown Under Salt Stress Conditions

Positive Wirkung von Melatonin auf Wachstum und Chlorophyllgehalt von Weizen (Triticum aestivum L.) unter Salzstress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Melatonin (Mel) is an essential molecule that regulates plant growth and development and alleviates the damaging effects of various environmental stressors, including salinity. Nevertheless, the mechanism of melatonin in mediating salt stress response of wheat seedlings still needs to be explored. Therefore, the present study aimed to investigate melatonin’s performance on some morpho-physiological attributes in wheat grown under salinity stress. In half-strength Hoagland solution (HS), two wheat cultivars, i.e Khaista-17 and Shahkar-13 were exposed to sodium chloride (NaCl) at 200 mM, no salt stress (control), Melatonin (200 μM) and Melatonin (200 μM) + NaCl (200 mM) for 15 days. Treatments were arranged in a 3-factorial completely randomized design (CRD) with three replicates for each treatment. After every 3‑day treatment, data were recorded on plant height, total fresh weight, shoot weight, root weight, and chlorophyll content. Results revealed that exogenous supplementation with melatonin under salinity stress significantly improved both wheat cultivars’ growth and physiological attributes (i.e. chlorophyll contents). Compared to salinity alone, the combined application of melatonin and sodium chloride increased total fresh weight by 17 and 23%, respectively, for both Shahkar-13 and Khaista-17 cultivars. Furthermore, melatonin (without NaCl) had the highest chlorophyll index (44), and the chlorophyll contents were enhanced to 25 and 37% by 200 µM melatonin combined with NaCl in both wheat cultivars, respectively. As a result, it could be concluded that the exogenous application of melatonin at 200 μM had a pronounced effect on the performance of wheat plants grown under salinity conditions through alleviating the adverse effects of salinity stress.

Zusammenfassung

Melatonin (Mel) ist ein essenzielles Molekül, das das Wachstum und die Entwicklung von Pflanzen reguliert und die schädlichen Auswirkungen verschiedener Umweltstressfaktoren, einschließlich Salzgehalt, mildert. Dennoch muss der Mechanismus von Melatonin bei der Vermittlung der Salzstressreaktion von Weizensämlingen noch erforscht werden. In der vorliegenden Studie wurde daher die Wirkung von Melatonin auf einige morphophysiologische Eigenschaften von Weizen untersucht, der unter Salzstress angebaut wurde. Zwei Weizensorten, Khaista-17 und Shahkar-13, wurden in halbstarker Hoagland-Lösung (HS) 15 Tage lang Natriumchlorid (NaCl) bei 200 mM, keinem Salzstress (Kontrolle), Melatonin (200 μM) und Melatonin (200 μM) + NaCl (200 mM) ausgesetzt. Die Behandlungen wurden in einem 3‑faktoriellen, vollständig randomisierten Design (CRD) mit drei Wiederholungen für jede Behandlung angeordnet. Nach jeder 3‑tägigen Behandlung wurden Daten zu Pflanzenhöhe, Gesamtfrischgewicht, Sprossgewicht, Wurzelgewicht und Chlorophyllgehalt aufgezeichnet. Die Ergebnisse zeigten, dass die exogene Supplementierung mit Melatonin unter Salzstress das Wachstum und die physiologischen Eigenschaften (d. h. den Chlorophyllgehalt) beider Weizensorten signifikant verbesserte. Im Vergleich zur alleinigen Salzbelastung erhöhte die kombinierte Anwendung von Melatonin und Natriumchlorid das Gesamtfrischgewicht der beiden Sorten Shahkar-13 und Khaista-17 um 17 bzw. 23 %. Darüber hinaus hatte Melatonin (ohne NaCl) den höchsten Chlorophyllindex (44), und der Chlorophyllgehalt wurde durch 200 µM Melatonin in Kombination mit NaCl bei beiden Weizensorten auf 25 bzw. 37 % erhöht. Daraus lässt sich schließen, dass die exogene Anwendung von Melatonin in einer Konzentration von 200 μM eine ausgeprägte Wirkung auf die Leistung von Weizenpflanzen hatte, die unter Salzstress-Bedingungen angebaut wurden, indem die negativen Auswirkungen des Salzstresses gemildert wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad S, Muhammad I, Wang GY, Zeeshan M, Yang L, Ali I, Zhou XB (2021) Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biol 21(1):1–14

    Article  Google Scholar 

  • Ahmed D, Fatima K, Saeed R (2014) Analysis of phenolic and flavonoid contents, and the anti-oxidative potential and lipid peroxidation inhibitory activity of methanolic extract of Carissa opaca roots and its fractions in different solvents. Antioxidants 3:671–683

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci 19:789–797. https://doi.org/10.1016/j.tplants.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24(1):38–48. https://doi.org/10.1016/j.tplants.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  • Economic Survey of Pakistan (2019) Economic survey of Pakistan. Government of Pakistan. Finance division economic adviser’s wing, Islamabad

    Google Scholar 

  • Elkelish AA, Soliman MH, Alhaithloul HA, El-Esawi MA (2019) Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiol Biochem 137:144–153

    Article  CAS  PubMed  Google Scholar 

  • Grattan S, Grieve C (1998) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohsin SM, Al Mahmud J, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681. https://doi.org/10.3390/antiox9080681

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Biomed Res Int. https://doi.org/10.1155/2014/589341

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013p) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Jiang X, Li H, Song X (2016) Seed priming with melatonin effects on seed germination and seedling growth in maize under salinity stress. Pak J Bot 48(4):1345–1352

    CAS  Google Scholar 

  • Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X, Wang S (2018) Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci 9:914. https://doi.org/10.3389/fpls.2018.00914

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan A, Numan M, Khan AL, Lee I, Imran M, Asaf S, Al-Harrasi AA (2020) Melatonin: awakening the defense mechanisms during plant oxidative stress. Plants 9:407. https://doi.org/10.3390/plants9040407

    Article  CAS  PubMed Central  Google Scholar 

  • Li C, Wang P, Wei Z, Liang D, Liu C, Yin L, Jia D, Fu M, Ma F (2012) The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J Pineal Res 53(3):298–306

    Article  CAS  PubMed  Google Scholar 

  • Machado R, Serralheiro R (2017) Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae 3(2):30. https://doi.org/10.3390/horticulturae3020030

    Article  Google Scholar 

  • Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelish A, Arnao MB, Li L, Ai S (2020) Melatonin and its protective role against biotic stress impacts on plants. Biomolecules 10(1):54

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nawaz K, Chaudhary R, Sarwar A, Ahmad B, Gul A, Hano C, Abbasi BH, Anjum S (2021) Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: current status and future perspectives. Sustainability 13(1):294

    Article  Google Scholar 

  • Negrao S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11. https://doi.org/10.1093/aob/mcw191

    Article  CAS  PubMed  Google Scholar 

  • Nemati SH, Farsi M, Vatandoost S (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ 5:159–163

    Google Scholar 

  • Radi AA, Farghaly FA, Hamada AM (2013) Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. J Biol Earth Sci 3(1):72–88

    Google Scholar 

  • Reiter RJ, Tan DX, Burkhardt S (2002) Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech Ageing Dev 123(8):1007–1019. https://doi.org/10.1016/S0047-6374(01)00384-0

    Article  CAS  PubMed  Google Scholar 

  • Sadak MS (2016) Mitigation of salinity adverse effects of on wheat by grain priming with melatonin. Int J Chemtech Res 9(2):85–97

    CAS  Google Scholar 

  • Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Horticul 103(1):93–99. https://doi.org/10.1016/j.scienta.2004.04.009

    Article  CAS  Google Scholar 

  • Siddiqui H, Alam P, Hayat S (2020) Melatonin modulates photosynthesis, redox status, and elemental composition to promote growth of Brassica juncea—a dose-dependent effect. Protoplasma 257(6):1685–1700. https://doi.org/10.1007/s00709-020-01537-6

    Article  CAS  PubMed  Google Scholar 

  • Silalert P, Pattanagul W (2021) Foliar application of melatonin alleviates the effects of drought stress in rice (Oryza sativa L.) seedlings. Not Bot Horti Agrobot Cluj Napoca 49(3):12417–12417. https://doi.org/10.15835/nbha49312417

    Article  CAS  Google Scholar 

  • Soliman MH, Alayafi AA, El Kelish AA, Abu-Elsaoud AM (2018) Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris l. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Bot Stud 59(1):1–17

    Article  CAS  Google Scholar 

  • Steel RG, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach (Vol. 2, pp. 137–139). New York: McGraw-Hill

    Google Scholar 

  • Sweet WJ, Morrison JC, Labaritch JM, Matthews MA (1990) Altered synthesis and composition of cell wall of grapevines Vitis vinifera L. during expression and growth inhibiting water deficits. Plant Cell Physiol 31:407–414

    CAS  Google Scholar 

  • Talaat NB (2019a) Abiotic stresses-induced physiological alteration in wheat. In: Hasanuzzaman M, Nahar K, Hossain A (eds) Wheat production in changing environments-responses, adaptation and tolerance. Springer, Singapore, pp 1–30 https://doi.org/10.1007/978-981-13-6883-7_1

    Chapter  Google Scholar 

  • Talaat NB (2019b) Effective Microorganisms: an innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production. Sci Hortic 250:254–265. https://doi.org/10.1016/j.scienta.2019.02.052

    Article  CAS  Google Scholar 

  • Van Tassel DL, Roberts N, Lewy A, O’Neill SD (2001) Melatonin in plant organs. J Pineal Res 31(1):8–15

    Article  PubMed  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2013) Long-term exogenous application of melatonin delays drought-induced leaf senescence in Apple. J Pineal Res 54(3):292–302

    Article  CAS  PubMed  Google Scholar 

  • Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N (2017) Salicylic acid to decrease plant stress. Environ Chem Lett 15:101–123. https://doi.org/10.1007/s10311-016-0584-0

    Article  CAS  Google Scholar 

  • Wei W, Li Q‑T, Chu Y‑N, Reiter RJ, Yu X‑M, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2015) Melatonin enhances plant growth and abiotic stress tolerance in Soybean plants. J Exp Bot 66(3):695–707. https://doi.org/10.1093/jxb/eru392

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Sun Y, Sun B, Zhang J, Guo XQ (2010) Effects of exogenous melatonin on active oxygen metabolism of cucumber seedlings under high temperature stress. Ying Yong Sheng Tai Xue Bao 21(5):1295–1300

    CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539. https://doi.org/10.1111/nph.14920

    Article  CAS  PubMed  Google Scholar 

  • Zafar S, Ashraf MY, Saleem M (2018) Shift in physiological and biochemical processes in wheat supplied with zinc and potassium under saline conditions. J Plant Nutr 41:19–28. https://doi.org/10.1080/01904167.2017.1380825

    Article  CAS  Google Scholar 

  • Zafar SA, Hasnain ZU, Anwar SU, Perveen SH, Iqbal NA, Noman A, Ali M (2019) Influence of melatonin on antioxidant defense system and yield of wheat (Triticum aestivum L.) genotypes under saline condition. Pak J Bot 51(6):1987–1994. https://doi.org/10.30848/PJB2019-6(5))

    Article  CAS  Google Scholar 

  • Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B (2017) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138:36–45. https://doi.org/10.1016/j.envexpbot.2017.02.012

    Article  CAS  Google Scholar 

  • Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo YD (2015) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66(3):647–656. https://doi.org/10.1093/jxb/eru336

    Article  CAS  PubMed  Google Scholar 

  • Zörb C, Geilfus C-M, Dietz K-J (2018) Salinity and crop yield. Plant Biol 21:31–38

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aftab Jamal.

Ethics declarations

Conflict of interest

I. Ahmad, F. Munsif, A. Mihoub, A. Jamal, M.F. Saeed, S. Babar, M. Fawad and A. Zia declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Munsif, F., Mihoub, A. et al. Beneficial Effect of Melatonin on Growth and Chlorophyll Content in Wheat (Triticum aestivum L.) Grown Under Salt Stress Conditions. Gesunde Pflanzen 74, 997–1009 (2022). https://doi.org/10.1007/s10343-022-00684-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00684-5

Keywords

Schlüsselwörter

Navigation