Skip to main content
Log in

Physiological and Biochemical Changes of Pepper Cultivars Under Combined Salt and Drought Stress

Physiologische und biochemische Veränderungen von Paprikasorten unter gleichzeitigem Salz- und Trockenstress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Drought and salinity have been considered as environmental problems for plant growth and productivity. This study was performed to investigate growth, biochemical and physiological response to interactive salt and drought stress in pepper seedlings with two different cultivars. We examined three different salinity levels (0, 75 and 150 mM NaCl) and three different irrigation levels (100%, 75% and 50% of the water to reach the field capacity). Drought and salt stress were imposed individually and together on Yalova cv. and Maras cv. pepper (Capsicum annuum L.). Plant growth, tissue electrolyte leakage, stoma conductivity, relative water content, and antioxidants etc. were significantly degraded by treatments. To tolerate stress conditions, pepper seedlings tried to adapt by changing their antioxidant enzyme activity, proline or sugar content. Severe drought stress caused roughly 55% fresh shoot weight loss for Maras cv. and roughly 65% yield loss for Yalova cv. However severe salt stress caused roughly 70% shoot weight loss for Maras and 78% yield loss for Yalova cv., on the other hand, when two stress factors implemented together the fresh shoot weight reduction were 85% for Maras cv. and 83% for Yalova cv.

Zusammenfassung

Trockenheit und Versalzung werden als Umweltprobleme für das Pflanzenwachstum und die Produktivität angesehen. In dieser Studie wurden das Wachstum sowie die biochemischen und physiologischen Reaktionen auf gleichzeitigen Salz- und Trockenstress bei Paprikasämlingen von zwei verschiedenen Sorten untersucht. Wir untersuchten drei verschiedene Versalzungsgrade (0, 75 und 150 mM NaCl) und drei verschiedene Bewässerungsgrade (100 %, 75 % und 50 % der Wassermenge, um die Feldkapazität zu erreichen). Die Paprikaarten Yalova cv. und Maras cv. (Capsicum annuum L.) wurden sowohl einzeln als auch gemeinsam unter Trocken- und Salzstress gesetzt. Das Pflanzenwachstum, der Elektrolytverlust im Gewebe, die stomatäre Leitfähigkeit, der relative Wassergehalt und die Antioxidantien usw. wurden durch die Behandlungen erheblich beeinträchtigt. Um die Stressbedingungen zu tolerieren, versuchten die Paprikasämlinge, sich anzupassen, indem sie ihre antioxidative Enzymaktivität, ihren Prolin- oder Zuckergehalt veränderten. Starker Trockenstress verursachte bei der Sorte Maras einen Verlust von etwa 55 % des Frischgewichts der Triebe und bei der Sorte Yalova einen Verlust von etwa 65 % des Ertrags. Starker Salzstress verursachte bei der Sorte Maras einen Verlust von etwa 70 % des Frischgewichts der Triebe und bei der Sorte Yalova einen Verlust von 78 % des Ertrags. Wurden beide Stressfaktoren kombiniert, so betrug der Rückgang des Frischgewichts der Triebe bei der Sorte Maras 85 % und bei der Sorte Yalova 83 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J Genet Plant Breed 46:27–34

    Article  CAS  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, Abd_Allah EF, Gucel S, Tran LS (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Angelini R, Manes F, Federico R (1990) Spatial an functional correlation between daimine- oxsidase and peroxidase activities and their dependence upon deetilation and wounding in chick-pea. Planta 182:89–96

    Article  CAS  Google Scholar 

  • Arbona V, Hossain Z, López-Climent MF, Pérez-Clemente RM, Gómez-Cadenas A (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132:452–466

    Article  CAS  Google Scholar 

  • Bhardwaj A, Devi P, Chaudhary S, Rani A, Jha UC, Kumar S, Bindumadhava H, Prasad PVV, Sharma KD, Siddique KHM, Nayyar H (2021) ‘Omics’ approaches in developing combined drought and heat tolerance in food crops. Plant Cell Rep. https://doi.org/10.1007/s00299-021-02742-0

    Article  PubMed  Google Scholar 

  • Blum A (1997) Crop responses to drought and the interpretation of adaptation. In: Belhassen E (ed) Drought tolerance in higher plants. Genetical, hysiological and molecular biological analysis. Kluwer, Dordrecht, pp 57–70

    Google Scholar 

  • De Smet I, Zhang H, Inze D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11(9):434–439

    Article  Google Scholar 

  • Desire M, Arslan H (2021) The effect of salicylic acid on photosynthetic characteristics, growth attributes, and some antioxidant enzymes on parsley (petroselinum crispum l.) under salinity stress. Gesunde Pflanz 73:435–444

    Article  CAS  Google Scholar 

  • Dolferus R (2014) To grow or not to grow: a stressful decision for plants. Plant Sci 2229:247–261

    Article  Google Scholar 

  • Ekinci M, Ors S, Sahin U, Yildirim E, Dursun A (2015) Responses to the irrigation water amount of spinach supplemented with organic amendment in greenhouse conditions. Commun Soil Sci Plant Anal 46:327–342

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Hamada EAM, Homoud MA, Kirkwood RC, El-Sayed H (1992) Studies on the adaptation of selected species of the Family Gramineae A. Juss to Salinization. Afaeddes Repert 103:128–798

    Google Scholar 

  • Hanci F, Cebeci E (2015) Comparison of salinity and drought stress effects on some morphological and physiological parameters in onion (Allium cepa L.) during early growth phase. Bulg J Agric Sci 21(6):1204–1210

    Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Vam RP (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Khan MSA, Chowdhury JA, Razzaque MA, Ali MZ, Paul SK, Aziz MA (2016) Dry matter production and seed yield of soybean as affected by post-flowering salinity and water stress. Bangladesh Agron J 19(2):21–27

    Article  Google Scholar 

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostatis a more critical issue? Plant Cell Environ 37:300–311

    Article  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  CAS  Google Scholar 

  • Lawlor DH, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25(2):275–294

    Article  CAS  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Bioph Res Co 495:286–291

    Article  CAS  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanism of stress survival. Antioxid Redox Signal 19(9):998–1011

    Article  CAS  Google Scholar 

  • Liu X, Huang B (2000) Carbohydrate accumulation in relation to heat stress tolerance in two creeping bentgrass cultivars. J Am Soc Hortic Sci 125:442–447

    Article  CAS  Google Scholar 

  • Ma C, Wang Y, Gu D, Nan J, Chen S, Li H (2017) Overexpression of S‑Adenosyl-l-methionine synthetase 2 from sugar beet M14 increased arabidopsis tolerance to salt and oxidative stress. Int J Mol Sci 18:847

    Article  Google Scholar 

  • Masoumi A, Kafi M, Khazaei H, Davari K (2010) Effect of drought stress on water status, elecrolyte leakage and enzymatic antioxidants of Kochia (Kochia scoparia) under saline condition. Pak J Bot 42:3517–3524

    Google Scholar 

  • Naing AH, Kim CK (2021) Abiotic stress-induced anthocyanins in plants: their role in tolerance to abiotic stresses. Physiol Plant 172(3):1711–1723

    Article  CAS  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73(3):121–131

    Article  CAS  Google Scholar 

  • Omami EN, Hammes PS (2006) Interactive effects of salinity and water stress on growth, leaf waterrelations, and gas exchange in amaranth (Amaranthus spp.). N Zeal J Crop Hort Sci 34:33–34

    Article  Google Scholar 

  • Ors S, Ekinci M, Yildirim E, Sahin U (2016) Changes in gas exchange capacity and selected physiological properties of squash seedlings (Cucurbita pepo L.) under well-watered and drought stress conditions. Arch Agron Soil Sci 62(12):1700–1710

    Article  CAS  Google Scholar 

  • Oukaltouma K, El Moukhtari A, Lahrizi Y, Makoudi B, Mouradi M, Farissi M, Willems F, Qaddoury F, Bekkaoui F, Ghoulam C (2022) Physiological, biochemical and morphological tolerance mechanisms of faba bean (Vicia faba L.) to the combined stress of water deficit and phosphorus limitation. J Soil Sciplant Nutr. https://doi.org/10.1007/s42729-022-00759-2

    Article  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integ Plant Biol 50:2–18

    Article  CAS  Google Scholar 

  • Sahin U, Ekinci M, Ors S, Turan M, Yildiz S, Yildirim E (2018) Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci Hort 240:196–204

    Article  CAS  Google Scholar 

  • Shams M, Yildirim E, Ekinci M, Turan M, Dursun A, Parlakova F, Kul R (2016) Exogenously applied glycine betaine regulates some chemical characteristics and antioxidative defence system in lettuce under salt stress. Hortic Environ Biotechnol 57(3):225–231

    Article  CAS  Google Scholar 

  • Ting SV (1956) Rapid colorimetric methods for simultaneous determination of total reducing sugars and fructose in citrus juices. J Agric Food Chem 4:263–266

    Article  CAS  Google Scholar 

  • Umar M, Siddiqui ZH (2018) Physiological performance of sunflower genotypes under combined salt and drought stress environment. Acta Bot Croat 77(1):36–44

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants: Protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij A (2011) The global technical and economic potential of bioenergy from salt-affected soils. Energ Environ Sci 4:2669–2681

    Article  Google Scholar 

  • Xu C, Leskovar DI (2014) Growth, physiology and yield responses of cabbage to deficit irrigation. Hort Sci (Prague) 41:138–146

    Article  Google Scholar 

  • Yildirim E, Ekinci M, Sahin U, Ors S, Turan M, Demir İ, Dursun A, Kotan R (2021) Improved water productivity in summer squash under water deficit with PGPR and synthetic methyl amine applications. Rhizosphere 20:100446

    Article  Google Scholar 

  • Yildirim E, Ekinci M, Turan M, Dursun A, Kul R, Parlakova F (2015) Roles of glycine betaine in mitigating deleterious effect of salt stress on lettuce (Lactuca sativa L.). Arch Agron Soil Sci 61(12):1673–1689

    Article  CAS  Google Scholar 

  • Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K (2021) Salt and drought stress responses in cultivated beets (Beta vulgaris L.) and wild beet (Beta maritima L.). Plants 10:1843

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selda Ors.

Ethics declarations

Conflict of interest

E. Yildirim, M. Ekinci, M. Turan, G. Ağar, S. Ors, A. Dursun, R. Kul and G. Akgül declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, E., Ekinci, M., Turan, M. et al. Physiological and Biochemical Changes of Pepper Cultivars Under Combined Salt and Drought Stress. Gesunde Pflanzen 74, 675–683 (2022). https://doi.org/10.1007/s10343-022-00642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00642-1

Keywords

Schlüsselwörter

Navigation