Skip to main content

Advertisement

Log in

Influence of Mycorrhizal Fungi and Microalgae Dual Inoculation on Basil Plants Performance

Der Einfluss von Doppelinokulation mit Mykorrhizapilzen und Mikroalgen auf die Leistung von Basilikumpflanzen

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The rhizosphere microbial community is a complex of organisms interconnecting in multifold ways, acting upon each other and reacting to the surrounding environment. In the present research, we evaluated the influence of dual inoculation with arbuscular mycorrhizal fungi (AMF) and microalgae (Scenedesmus incrassatulus R83 and Synechocystis sp. R10) on basil plants performance. Different modes of basil inoculation (AMF, microalgae and a combination of both) were analyzed. We characterized AMF function (colonization and glomalin-related soil proteins), acid phosphatase activity (in root and soil), plant growth, photosynthetic parameters, secondary metabolites (fluorescence indices of leaf chlorophyll content; flavonols contents; nitrogen balance index), and the activity of plant enzymes linking nitrogen and carbon metabolism (glutamate synthase, aspartate aminotransferase and NADP-malic enzyme). The highest values of biometrical data were as a result of mycorrhiza application alone and in the mixed treatments with both microalgae strains. Dual inoculation with both microalgae and AMF, stimulated mycorrhizal function (concentration of glomalin-related proteins). Indexes of secondary metabolites (flavonols and anthocyanins) increased after treatment with Scenedesmus (Al1 and AM + Al1) compared to control plants. The addition of Synechocystis alone and in combination with fungi positively influenced nitrogen balance index. Different modes of inoculation increased gas-exchange parameters in all variations of inoculations compare to control plants. The results for activities of nitrogen-carbon metabolizing enzymes demonstrated close relationships with the plant growth. The mycorrhizal root colonization of basil may bear considerable economic importance. Thus, the addition of suitable AMF to the rhizosphere would significantly improve the growth and productivity of commercial Ocimum spp. cultivation.

Zusammenfassung

Die Mikrobengemeinschaft im Wurzelraum ist ein Komplex aus Organismen, die auf verschiedenste Weise miteinander verbunden sind, miteinander in Wechselwirkung stehen und auf ihre Umgebung reagieren. In der vorliegenden Studie wurde der Einfluss der Doppelinokulation mit Arbuskulären Mykorrhizapilzen (AMF) und Mikroalgen (Scenedesmus incrassatulus R83 und Synechocystis sp. R10) auf die Leistung von Basilikumpflanzen untersucht. Unterschiedliche Arten der Inokulation von Basilikum (AMF, Mikroalgen sowie eine Kombination aus beiden) wurden analysiert. Charakterisiert wurden die Funktion von AMF (Kolonisierung und Glomalin-verwandte Bodenproteine), die Aktivität saurer Phosphatase (in Wurzeln und im Boden), das Pflanzenwachstum, Photosyntheseparameter, sekundäre Metaboliten (Fluoreszenznachweis des Chlorophyllgehalts der Blätter, Flavonolgehalt, Stickstoffbilanz-Index) sowie die Aktivität von Pflanzenenzymen in der Verbindung des Stickstoff- und des Kohlenstoffmetabolismus (Glutamatsynthase, Aspartat-Aminotransferase und NADP-abhängiges Malatenzym). Die höchsten Werte dieser biometrischen Daten resultierten aus der Anwendung von Mykorrhiza allein sowie aus der gemischten Behandlung mit beiden Mikroalgenstämmen. Die doppelte Inokulation mit beiden Mikroalgen und AMF stimulierte die Mykorrhizafunktion (Konzentration Glomalin-verwandter Proteine). Die Indizes sekundärer Metaboliten (Flavonole und Anthocyane) stiegen nach der Behandlung mit Scenedesmus (Al1 und AM + Al1) im Vergleich mit Kontrollpflanzen. Die Zugabe von Synechocystis allein und in Kombination mit Pilzen hatte einen positiven Einfluss auf den Stickstoffbilanz-Index. Unterschiedliche Arten der Inokulation erhöhten Gasaustauschparameter in allen Variationen im Vergleich zu den Kontrollpflanzen. Die Ergebnisse zur Aktivität von Stickstoff-Kohlenstoff metabolisierenden Enzymen zeigten einen engen Zusammenhang mit dem Pflanzenwachstum. Die Wurzelbesiedelung von Basilikum mit Mykorrhiza könnte von beträchtlicher wirtschaftlicher Bedeutung sein. So würde die Zugabe geeigneter AMF in den Wurzelraum signifikant das Wachstum und die Produktivität im kommerziellen Anbau von Ocimum spp. verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Van Aarle I, Olsson P, Söderström B (2002) Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol 155:173–182

    Article  Google Scholar 

  • Abd-Alla MH (1994) Use of organic phosphorus by Rhizobium leguminosarum biovar Viceae phosphatases. Biol Fertil Soils 18:216–218

    Article  CAS  Google Scholar 

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Agricultural importance of algae. Afr J Biotechnol 11:11648–11658

    Article  Google Scholar 

  • Aiba S, Ogawa T (1977) Assessment of growth yield of a blue-green alga: Spirulina platensis in axenic and continuous culture. J Gen Microbiol 102:179–182

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of micrograms quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brilli F, Tsonev T, Mahmood T, Velikova V, Loreto F, Centritto M (2013) Ultradian variation of isoprene emission, photosynthesis, mesophyll conductance and optimum temperature sensitivity for isoprene emission in water-stressed Eucalyptus citriodora saplings. J Exp Bot 64:519–528

    Article  PubMed  CAS  Google Scholar 

  • El Gamal M, Massoud O, Salem O (2009) The promotive effect of algae and Rhizobium leguminosarum on arbuscular mycorrhizal fungi activity and their impact on faba bean plant. Egypt J Microbiol 24:95–108

    Google Scholar 

  • El-Khateeb MA, El-Leithy AS, Aljemaa BA (2011) Effect of mycorrhizal fungi inoculation and humic acid on vegetative growth and chemical composition of Acacia saligna labill. seedlings under different irrigation intervals. J Hortic Sci Ornam Plants 3:283–289

    Google Scholar 

  • Fitter A, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Article  Google Scholar 

  • Georgiev D, Dilov H, Avramova S (1978) Millieu nutritif tamponne et méthode de culture intensive des microalgues vertes. Hydrobiology 7:14–23

    CAS  Google Scholar 

  • Gerrard Wheeler M, Tronconi M, Drincovich MF, Andreo CS, Flügge UI, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis thaliana. Plant Physiol 139:39–51

    Article  PubMed Central  CAS  Google Scholar 

  • Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Goulas Y, Cerovic ZG, Cartelat A, Moya I (2004) Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl Opt 43:4488–4496

    Article  PubMed  CAS  Google Scholar 

  • Griffith SM, Vance CP (1989) Aspartate aminotransferase in alfalfa root nodules 1. Purification and partial characterization. Plant Physiol 90:1622–1629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grzesik M, Romanowska-Duda Z (2015) Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants. Pol J Environ Stud 24:1003–1012

    Article  Google Scholar 

  • Hodges M (2002) Enzyme redundancy and the importance of 2‑oxoglutarate in plant ammonium assimilation. J Exp Bot 53:905–916

    Article  PubMed  CAS  Google Scholar 

  • Jackson NE, Franklin RE, Miller RH (1972) Effects of vesicular-arbuscular mycorrhizae on growth and phosphorus content of three agronomic crops. Soil Sci Soc Am Proc 36:64–67

    Article  Google Scholar 

  • Jansa J, Gryndler M (2010) Biotic environment of the arbuscular mycorrhizal fungi in soil. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Heidelberg, pp 209–236

    Chapter  Google Scholar 

  • Kaschuk G, Kuyper T, Leffelaar P, Hungria M, Giller K (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonization improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water stressed conditions. Plant Soil 253:287–292

    Article  CAS  Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446

    Article  PubMed  CAS  Google Scholar 

  • Krämer S, Green DM (2000) Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biol Biochem 32:179–188

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Matoh T, Ida S, Takahashi E (1980) Isolation and characterization of NADH-glutamate synthase from pea (Pisum sativum L.). Plant Cell Physiol 21:1461–1474

    Article  PubMed  CAS  Google Scholar 

  • Nijs I, Ferris R, Blum H (1997) Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). Plant Cell Environ 20:1041–1050

    Article  Google Scholar 

  • Paradi I, Bratek Z, Lang F (2003) Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata. Biol Plant 46:563–569

    Article  CAS  Google Scholar 

  • Pelczar MJ, Chan ECS, Krieg NR (2003) Microbiology of soil. Microbiology, 5th edn. Tata McGraw-Hill Publishing Company Limited, New Delhi

    Google Scholar 

  • Petkov G (1995) Nutrition medium for intensive cultivation of green microalgae in fresh and sea water. Arch Hydrobiol 109:81–85

    Google Scholar 

  • Phillips JM, Hayman SD (1970) Improved procedures for clearing and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Prasad K, Aggarwal A, Yadav K, Tanwar A (2012) Impact of different levels of superphosphate using arbuscular mycorrhizal fungi and Pseudomonas fluorescence on Chrysanthemum indicum L. J Soil Sci Plant Nutr 12:451–462

    Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, Pascale S, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108. https://doi.org/10.1016/j.scienta.2015.09.002

    Article  Google Scholar 

  • Ruiz-Lozano JM, Aroca R (2010) Host response to osmotic stresses: stomatal behavior and water use efficiency of arbuscular mycorrhizal plants. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Berlin, pp 239–256

    Chapter  Google Scholar 

  • Schneider K, Turrion MB, Gallardo JF (2000) Modified method for measuring acid phosphatase activities in forest soils with high organic matter content. Commun Soil Sci Plant Anal 31:3077–3088

    Article  CAS  Google Scholar 

  • Šetlik I (1967) Contamination of algal cultures by heterotrophic microorganisms and its prevention. Ann Rep Algol for the Year 1966. CSAV, Inst Microbiol, Trebon, pp 89–100

    Google Scholar 

  • Smith SE, Read DJ (1997) Vesicular-arbuscular mycorrhizas. In: Smith SE, Read DJ (eds) Mycorrhizal symbiosis, 2nd edn. Academic Press, New York, pp 9–160

    Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p‑nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  CAS  Google Scholar 

  • Welc M, Ravnskov S, Kieliszewska-Rokicka B, Larsen J (2010) Suppression of other soil microorganisms by mycelium of arbuscular mycorrhizal fungi in root-free soil. Soil Biol Biochem 42:1534–1540

    Article  CAS  Google Scholar 

  • Wilson LT (2006) Cyanobacteria: a potential nitrogen source in rice fields. Texas Rice 6, pp 9–10

    Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, Yang G, Cui XM, Yang L, Wu ZX, Chen ML, Zhang Y (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23:253–265

    Article  PubMed  CAS  Google Scholar 

  • Zhang BB, Liu WZ, Chang SX, Anyia AO (2012) Phosphorus fertilization and fungal inoculations affected the physiology, phosphorus uptake and growth of spring wheat under rainfed conditions on the Canadian prairies. J Agron Crop Sci 199:85–93

    Article  CAS  Google Scholar 

  • Zhu SP, Long SL (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieta Hristozkova.

Ethics declarations

Conflict of interest

M. Hristozkova,L Gigova, M. Geneva,I. Stancheva, V. Velikova and G Marinova declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hristozkova, M., Gigova, L., Geneva, M. et al. Influence of Mycorrhizal Fungi and Microalgae Dual Inoculation on Basil Plants Performance. Gesunde Pflanzen 70, 99–107 (2018). https://doi.org/10.1007/s10343-018-0420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-018-0420-5

Keywords

Schlüsselwörter

Navigation