Skip to main content
Log in

Protective Role of a methanolic Extract of Spinach (Spinacia oleracea L.) Against Adverse Effects of UV-C Irradiation on Fenugreek (Trigonella foenum-graecum L.) Seedlings

Die protektive Rolle eines methanolischen Spinatextraktes (Spinacia oleracea L.) gegen Nebenwirkungen der UV‑C-Bestrahlung auf Bockhornkleesprosse (Trigonella foenum-graecum L.).

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Photosynthesis is an important process for plants in which plants utilize the energy from sunlight to manufacture and produce all their own food. Although UV-C damage is not physiologically relevant for plants growing in the sun, short-wavelength (UV-C) radiation from germicidal lamps has been used to study cell damage in animals as well as in plants. This study provides a review of the effects of a methanolic extract of spinach (SE) as a natural powerful antioxidants used at two concentrations (25 and 50 ppm) on fenugreek seedlings grown under UV-C stress conditions. The results revealed that exposure of fenugreek seedlings to low UV-C period (30 min) increased growth criteria of the produced seedlings. In addition, the contents of chlorophyll, total pigments, total protein, free amino acids, non-enzymatic (carotenoids, total phenol, flavonoids, α‑tocopherol & ascorbic acid contents) and enzymatic antioxidants were increased at this period. By increasing exposure periods of UV-C radiation, the growth criteria and chemical constitutes of the seedlings were decreased. Application of lower concentration of SE (25 ppm) improve the growth of the seedlings at 30-min UV-C and was able to protect seedlings from high periods of UV-C irradiation by increasing all measured parameters except CAT. These increases might be an adaptive mechanism to minimize the adverse effects of longer exposure of UV-C radiation. Moreover, treating the irradiated seedlings with spinach extract led to an obvious alteration in gene expression including synthesis of some proteins bands and disappearance of other protein sets of the protein profile.

Zusammenfassung

Die Photosynthese ist ein wichtiger Prozess für Pflanzen, bei dem sie die Sonnenenergie zum Aufbau und zur Erzeugung ihrer lebensnotwendigen Stoffe benutzen. Obwohl die UV-C-Schäden physiologisch für die in der Sonne gewachsenen Pflanzen nicht relevant sind, wurde die Kurzwellenradiation (UV-C) aus Ultraviolett-Lampen verwendet, um Zellenschäden bei Tieren und Pflanzen zu untersuchen.

Diese Studie setzt sich mit den Resultaten über die Wirkung des Spinatextraktes (SE) als natürliches, starke Antioxidationsmittel in zwei Konzentrationen (25 und 50 ppm) auf die Bockhornkleesprossen, die unter belastenden UV-C-Bestrahlungen aufgewachsen sind, auseinander. Die Ergebnisse zeigen, dass die Bestrahlung der Bockhornkleesprosse mit UV-C für eine kurze Zeitdauer (30 min) die Wachstumsmerkmale der produzierten Sprosse erweitert. Außerdem erhöht sich der Gehalt an Chlorophyll, Gesamtpigmenten, Gesamtprotein, freien Aminosäuren, nicht-enzymatischen (Karotinide, Gesamtphenole, Flavonoide, Alpha-Tocopherol und Ascorbicsäure) und enzymatischen Antioxidationsmitteln in dieser Periode. Bei einer Verlängerung der Bestrahlungszeit mit UV-C verringern sich die Wachstumsmerkmale und die chemischen Bestandteile der Sprosse. Die Verwendung der niedrigen SE-Konzentration (25 ppm) verbessert die Wachstumsmerkmale der Sprosse bei 30-Minuten-UV-C-Bestrahlung und schützt die Sprosse vor langen Perioden der UV-C-Irradiation. Das zeigt sich an der Steigerung aller Messparameter außer CAT. Diese Steigerung könnte ein Kompensationsmechanismus zur Reduzierung der schlechten Einflüsse der langen UV-C-Radiation sein. Außerdem führt die Behandlung der bestrahlten Sprosse mit dem Spinatextrakt zu einer klaren Veränderung in der Genexpression: zum einen in der Synthese sowie sowie im Verschwinden Proteingruppen in dem Proteinprofil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abd El-hamid EM, Sadak MS, Tawfik MM (2016) Physiological response of Fenugreek plant to the application of proline under different water regimes. Res J Pharm Biol Chem Sci 7:580–594

    CAS  Google Scholar 

  • Al-Dosari MS (2010) Antioxidant and protective effects of spinach (Spinacia oleracea L.) leaves against carbon tetrachloride induced liver injury. Int J Clin Exp Med 4:129–140

    Article  Google Scholar 

  • Athar H, Ashraf M, Jamal AA (2009) Inducing salt tolerance in canola (Brassica napus L.) by exogenous application of glycinebetaine and proline: response in the initial growth stages. Pak J Bot 41:1311–1319

    CAS  Google Scholar 

  • Balakrishnan V, Venkatesan K, Ravindran KC, Kulandaivelu G (2005) Protective mechanism in UV-B treated Crotalaria juncea L. seedlings. Plant Protect Sci 41:115–120

    Google Scholar 

  • Bergman M, Varshavsky L, Gottlieb HE, Grossman S (2001) The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochem 58:143–152

    Article  CAS  Google Scholar 

  • Bergmeyer HU (1974) Methods of Enzymatic Analysis 1, 2nd edn. Academic Press, New York

    Google Scholar 

  • Bhatia AL, Jain M (2004) Spinacia oleracea L. protects against gamma radiations: a study on glutathione and lipid peroxidation in mouse liver. Phytomedicine 11:607–615

    Article  CAS  PubMed  Google Scholar 

  • Booij-James IS, Dube SK, Jansen MAK, Edelman M, Mattoo AK (2000) Ultraviolet-B radiation impacts lightmediated turnover of the photosystem II reaction center heterodimer in arabidopsis mutants altered in phenolic metabolism. Plant Physiol 124:1275–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Britto JA, Jeevitha M, Stephan L, Raj T (2011) Alterations of protein and DNA profiles of Zea mays L. under UV- B radiation. J Stress Physiol Biochem 7:232–240

    Google Scholar 

  • Bunea A, Andjelkovic M, Socaciu C, Bobis O, Neacsu M, Verhe R et al (2008) Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem 108:649–656

    Article  CAS  PubMed  Google Scholar 

  • Bushra S, Farooq A, Muhammad A (2009) Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14:2167–2180

    Article  Google Scholar 

  • Charles MT, Tano K, Asselin A, Arul J (2009) Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit V. Constitutive defence enzymes and inducible pathogenesis related proteins. Postharvest Biol Technol 51:414–424

    Article  CAS  Google Scholar 

  • Chatterjee S, Variyar PS, Sharma A (2010) Bioactive lipid constituents of fenugreek. Food Chem 1:349–353

    Article  Google Scholar 

  • Chen Y, Cao XD, Lu Y, Wang XR (2000) Effects of rare earth metal ions and their EDTA complexes on antioxidant enzymes of fish liver. Bull Environ Contam Toxicol 65:357–365

    Article  CAS  PubMed  Google Scholar 

  • Chun OK, Kim DO, Lee CY (2003) Superoxide radical scavenging activity of the major polyphenols in fresh plums. J Agric Food Chem 51:8067–8072

    Article  CAS  PubMed  Google Scholar 

  • Flint SD, Ryel RJ, Caldwell MM (2003) Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies. Agric For Meteorol 120:177–189

    Article  Google Scholar 

  • Fornaciari S, Milano F, Mussi F, Pinto-Sanchez L, Forti L, Buschinib A, Arru L (2015) Assessment of antioxidant and antiproliferative properties of spinach plants grown under low oxygen availability. J Sci Food Agric 95:490–496

    Article  CAS  PubMed  Google Scholar 

  • González-Aguilar GA, Zavaleta-Gatica R, Tiznado-Hernández ME (2007) Improving postharvest quality of mango ‘Haden’ by UV-C treatment. Postharvest Biol Technol 45:108–116

    Article  Google Scholar 

  • Gorelick-Feldman J, Maclean D, Ilic N, Poulev A, Lila MA, Cheng D et al (2008) Phytoecdysteroids increase protein synthesis in skeletal muscle cells. J Agric Food Chem 56:3532–3537

    Article  CAS  PubMed  Google Scholar 

  • Gout E, Boisson AM, Aubert S, Douce R, Bligny R (2001) Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies. Plant Physiol 125:912–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain K, Kataria S, Guruprasad KN (2004) Effect of UV-B radiation on antioxidant enzymes and its modulation by benzoquinone and α‑tocopherol in cucumber cotyledons. Curr Sci 87:87–90

    CAS  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiol 57:315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobashigawa C, Tamaya K, Shimomachi T (2011) Effect of UV-C treatment on plant growth and nutrient contents. Acta Hortic 907:237–242

    Article  CAS  Google Scholar 

  • Laememli UK (1970) Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Lamhamdi M, Bakrim A, Bouayad N, Aarab A, Lafont R (2013) Protective role of a methanolic extract of spinach (Spinacia oleracea L.) against Pb toxicity in wheat (Triticum aestivum L.) seedlings: beneficial effects for a plant of a nutraceutical used with animals. Environ Sci Pollut Res 20:7377–7385

    Article  CAS  Google Scholar 

  • Liu W, Yang Q (2012) Effects of supplemental UV-A and UV-C irradiation on growth, photosynthetic pigments and nutritional quality of pea seedlings. Acta Hortic 956:657–663

    Article  Google Scholar 

  • Lomnitski L, Padilla-Banks E, Jefferson WN, Nyska A, Grossman S, Newbold RR (2003) A natural antioxidant mixture from spinach does not have estrogenic or antiestrogenic activity in immature CD-1 mice. J Nutr 3:3584–3587

    Google Scholar 

  • Lowry OH, Rosembrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:267–275

    Google Scholar 

  • Maeda N, Yoshida H, Mizushina Y (2010) Spinach and health: anticancer effect. In: Watson RR, Preedy VR (eds) Bioactive foods in promoting health: fruit and vegetables. Elsevier, Amsterdam, pp 393–405

    Chapter  Google Scholar 

  • Mahdavian K, Ghorbanli M, Kalantari KM (2008) The effects of ultraviolet radiation on the contents of chlorophyll, flavonoid, anthocyanin and proline in Capsicum annuum L. Turk J Bo 32:25–33

    Google Scholar 

  • Martino CD, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463

    Article  Google Scholar 

  • Montgomery J (2009) The potential of fenugreek (Trigonella foenum-graecum) as a forage for dairy herds in central Alberta. University of Alberta, USA, pp 4–15

    Google Scholar 

  • Moore S, Stein WH (1954) A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem 211:907–913

    CAS  PubMed  Google Scholar 

  • MuKherjee SP, Choudhuri MA (1983) Implication of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedling. Plant Physiol 58:166–170

  • Nasibi F, Kalantari KM (2005) The effects of UV-A, UV-B and UV-C on protein and ascorbate content, lipid peroxidation and biosynthesis of screening compounds in Brassica napus. Iran J Sci Technol 29:39–48

    CAS  Google Scholar 

  • Neelamegam R, Sutha T (2015) UV-C irradiation effect on seed germination, seedling growth and productivity of groundnut (Arachis hypogaea L.). Int J Curr Microbiol App Sci 4:430–443

    Google Scholar 

  • Otari KV, Gaikwad PS, Shete RV (2010) Spinach olerracea Linn: a pharmacognostic and pharmacological overview. Int J Res Ayurveda Pharm 1:78–84

    Google Scholar 

  • Palma JM, Sandalio LM, Corpas FJ, Romero-puertas MCM, Del Rio LA (2002) Plant proteases, protein degradation and oxidative stress: role of peroxisoms. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Perry A, Rasmussen H, Johnson EJ (2009) Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J Food Compost Anal 22:9–15

    Article  CAS  Google Scholar 

  • Philip B, Bernard L, William H (1954) Vitamins and deficiency diseases. In: Practical physiological chemistry. McGraw-Hill, New York, Toronto, London, pp 1272–1274

    Google Scholar 

  • Posé D, Castanedo I, Borsani O, Nieto B, Rosado A, Taconnat L, Ferrer A, Dolan L, Valpuesta V, Botella MA (2009) Identification of the arabidopsis dry2/sqe1-5 mutant reveals a central role for sterols in drought tolerance and regulation of reactive oxygen species. Plant J 59:63–76

    Article  PubMed  Google Scholar 

  • Rahimzadeh P, Hosseini S, Dilmaghani K (2011) Effects of UV-A and UV-C radiation on some morphological and physiological parameters in Savory (Satureja hortensis L.). Ann Biol Res 2:164–171

    CAS  Google Scholar 

  • Ramya S, Balakrishnan V (2013) Impacts of ultraviolet-B radiation on Antioxidant defense system in Aeschynomene aspera L. Res Plant Biol 3:37–42

    Google Scholar 

  • Rastogi RP, Singh SP, Incharoensakdi A, Häder DP, Sinha RP (2014) Ultraviolet radiation-induced generation of reactive oxygen species, DNA damage and induction of UV-absorbing compounds in the cyanobacterium Rivularia sp. HKAR-4. S Afr J Bot 90:163–169

    Article  CAS  Google Scholar 

  • Rathore D, Agrawal SB, Singh A (2003) Influence of supplemental UV-B radiation and mineral nutrients on biomass, pigments and yield of two cultivars of wheat. Int J Biotronics 32:1–15

    Google Scholar 

  • Sadak MSh (2016) Mitigation of drought stress on fenugreek plant by foliar application of trehalose. Inter J Chem Tech Res 9:147–155

    Google Scholar 

  • Sajid M, Khan MA, Bilal W, Rab A, Iqbal Z, Khan SI (2017) Anti-oxidant activities, chemical attributes and fruit yield of peach cultivars as influenced by foliar application of ascorbic acid. Gesund Pflanzen 69(3):113–121. https://doi.org/10.1007/s10343-017-0395-7

    Article  CAS  Google Scholar 

  • Shahidi F, Naczk M (1995) Methods of analysis and quantification of phenolic compounds. Food phenolic: sources, chemistry, effects and applications. Technomic Publishind Company, Inc, Lancaster, pp 287–293

    Google Scholar 

  • Vernon LP, Seely GR (1966) The chlorophylls. Academic Press, New York

    Google Scholar 

  • Zhang J, Cui S, Li J, Wei J, Kirkham MB (1995) Protoplasmic factors, antioxidant responses, and chilling resistance in maize. Plant Physiol Biochem 33:567–575

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Ageeb Akladious.

Ethics declarations

Conflict of interest

A.H.M.A. Mohammed and S.A. Akladious declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A.H.M.A., Akladious, S.A. Protective Role of a methanolic Extract of Spinach (Spinacia oleracea L.) Against Adverse Effects of UV-C Irradiation on Fenugreek (Trigonella foenum-graecum L.) Seedlings. Gesunde Pflanzen 69, 185–196 (2017). https://doi.org/10.1007/s10343-017-0404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-017-0404-x

Keywords

Schlüsselwörter

Navigation