Skip to main content
Log in

Promoting Impact of Electromagnetic Field on Antioxidant System and Performance of Vascular Tissues in Physalis alkekengi

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The goal of this study was to evaluate impacts of electromagnetic fields (EMF) on the membrane lipid peroxidation, anatomical alterations, antioxidant enzymes activities, total phenolic and flavonoid contents of Physalis alkekengi L. from Solanaceae family. In vitro germinated seeds were exposed with various intensities of EMF (0, 2, 4, 6 and 8 mT). Our results showed that EMF enhanced dry mass, root and shoot length, protein content, superoxide dismutase (SOD) and peroxidase (POX) enzymes activities, while decreased hydrogen peroxide (H2O2) level, lipid peroxidation (MDA) and catalase (CAT) activity as compared to the control. The maximum induction of seed germination (81.2%) was detected at 6 mT. Xylem number, phloem area and stele diameter increased up to 4 mT in P. alkekengi, and then decreased at higher intensities. Total phenolic and flavonoid also increased under different EMF intensities, and the optimum contents were observed at 4 (147.36 µg/g dry wt) and 6 mT (99.36 µg/g dry wt) for total phenolic and flavonoid, respectively. The results revealed that EMF pretreatment improved, secondary metabolites content and membrane stability via promoting antioxidant enzyme activity and reactive oxygen scavenging in P. alkekengi seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ge, Y., Duan, Y., Fang, G., Zhang, Y., and Wang, S., Study on biological activities of Physalisalkekengi var. francheti polysaccharide, J. Sci. Food Agric., 2009, vol. 89, p. 1593.

    Article  CAS  Google Scholar 

  2. Helvaci, S., Kökdil, G., Kawai, M., Duran, N., Duran, G., and Güvenç, A., Antimicrobial activity of the extracts and physalin D from Physalis alkekengi and evaluation of antioxidant potential of physalin D, Pharm. Biol., 2010, vol. 48, p. 142.

    Article  CAS  Google Scholar 

  3. Zhu, F., Dai, C., Fu, Y., Loo, J.F.C., Xia, D., Gao, S.P., Ma, Z., and Chen, Z., Physalin A exerts anti-tumor activity in non-small cell lung cancer cell lines by suppressing JAK/STAT3 signaling, Oncotarget, 2016, vol. 7, p. 9462.

    Article  Google Scholar 

  4. Hong, J.M., Kwon, O.K., Shin, I.S., Song, H.H., Shin, N.R., Jeon, C.M., Oh, S.R., Han, S.B., and Ahn, K.S., Anti-inflammatory activities of Physalis alkekengi var. franchetii extract through the inhibition of MMP-9 and AP-1 activation, Immunobiology, 2015, vol. 220, p. 1.

    Article  CAS  Google Scholar 

  5. Gould, J.L., Magnetoreception, Curr. Biol., 2010, vol. 20, p. R431.

    Article  CAS  Google Scholar 

  6. Shabrangi, A. and Majd, A., Comparing effects of electromagnetic fields (60 Hz) on seed germination and seedling development in monocotyledons and dicotyledons, Proc. Prog. Electromagn. Res. Symp., 2009, p. 704.

  7. Asghar, T., Jamil, Y., Iqbal, M., and Abbas, M., Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages, J. Photochem. Photobiol., B, 2016, vol. 165, p. 283.

    Article  CAS  Google Scholar 

  8. Azimian, F. and Roshandel, P., Magnetic field effects on total phenolic content and antioxidant activity in Artemisia sieberi under salinity, Ind. J. Plant. Physiol., 2015, vol. 120, p. 264.

    Article  Google Scholar 

  9. Hassanpour, H. and Niknam, V., Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field, Plant Cell, Tissue Organ Cult., 2020, vol. 142, p. 583.

    Article  CAS  Google Scholar 

  10. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, J. Physiol. Plant., 1962, vol. 15, p. 473.

    Article  CAS  Google Scholar 

  11. Mansourkhaki, M., Hassanpour, H., and Hekmati, M., Effect of static magnetic field on growth factors, antioxidant activity and anatomical responses of Silybum marianum seedlings, J. Plant. Proc. Funct., 2019, vol. 7, p. 10.

    Google Scholar 

  12. Noorbakhsh, N., Ghahraman, A., Attar, F., and Mahdigholi, K., Leaf anatomy of Artimisia (Asteraceae) in Iran and its taxonomic implications, Iran. J. Bot., 2008, vol. 14, p. 54.

    Google Scholar 

  13. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, p. 189.

    Article  CAS  Google Scholar 

  14. Velikova, V., Yordanov, I., and Edreva, A., Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines, Plant. Sci., 2000, vol. 151, p. 59.

    Article  CAS  Google Scholar 

  15. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1967, vol. 72, p. 248.

    Article  Google Scholar 

  16. Giannopolitis, C.N. and Ries, S.K., Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings, J. Plant. Physiol., 1997, vol. 59, p. 315.

    Article  Google Scholar 

  17. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, p. 121.

    Article  CAS  Google Scholar 

  18. Abeles, F.B. and Biles, C.L., Characterization of peroxidases in lignifying peach fruit endocarp, J. Plant. Physiol., 1991, vol. 95, p. 269.

    Article  CAS  Google Scholar 

  19. Singleton, V.L. and Rosi, J.A., Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents, Am. J. Enol. Vitric., 1965, vol. 16, p. 144.

    CAS  Google Scholar 

  20. Hatamnia, A.A., Abbaspour, N., and Darvishzadeh, R., Antioxidant activity and phenolic profile of different parts of bene (Pistacia atlantica subsp. kurdica) fruits. Food Chem., 2014, vol. 145, p. 306.

    Article  CAS  Google Scholar 

  21. Baghel, L., Katria, S., and Guruprasad, K.N., Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress, Bioelectromagnetics, 2017, vol. 37, p. 455.

    Article  Google Scholar 

  22. Vashisth, A. and Nagarajan, S., Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chick pea (Cicer arietinum L.), Bioelectromagnetics, 2008, vol. 29, p. 571.

    Article  Google Scholar 

  23. Kozlowski, T.T., Responses of woody plants to flooding and salinity, Tree Physiol. Monogr., 1997, vol. 1, p. 1.

    Google Scholar 

  24. Selim, A.F.H. and El-Nady, M.F., Physio-anatomical responses of drought stressed tomato plants to magnetic field, Acta Astronaut., 2011, vol. 69, p. 387.

    Article  CAS  Google Scholar 

  25. Apel, K. and Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 2004, vol. 55, p. 373.

    Article  CAS  Google Scholar 

  26. Blokhina, O., Virolainen, E., and Fagerstedt, K.V., Antioxidants, oxidative damage and oxygen deprivation stress: a review, Ann. Bot., 2003, vol. 91, p. 179.

    Article  CAS  Google Scholar 

  27. Haghighat, N., Abdolmaleki, P., Ghanati, F., Behmanesh, M., and Payez, A., Modification of catalase and MAPK in Vicia faba cultivated in soil with high natural radioactivity and treated with a static magnetic field, J. Plant Physiol., 2014, vol. 5, p. 99.

    Article  Google Scholar 

  28. Serdyukov, Y. and Novitskii, Y.I., Impact of weak permanent magnetic field on antioxidant enzyme activities in radish seedlings, Russ. J. Plant. Physiol., 2013, vol. 60, p. 69.

    Article  CAS  Google Scholar 

  29. Bose, J., Rodrigo-Moreno, A., and Shabala, S., ROS homeostasis in halophytes in the context of salinity stress tolerance, J. Exp. Bot., 2014, vol. 65, p. 1241.

    Article  CAS  Google Scholar 

  30. Wang, F., Zhu, H., Chen, D., Li, Z., Peng, R., and Yao, Q., A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana, Plant Cell, Tissue Organ Cult., 2016, vol. 125, p. 387.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Aerospace Research Institute, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hassanpour.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: EMF—electromagnetic fields; MDA—malondialdehyde; mT—milliTesla: SMF—static magnetic field; T—Tesla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanpour, H., Hassanpour, S. Promoting Impact of Electromagnetic Field on Antioxidant System and Performance of Vascular Tissues in Physalis alkekengi . Russ J Plant Physiol 68, 545–551 (2021). https://doi.org/10.1134/S1021443721030079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721030079

Keywords:

Navigation