Using NFI data to simulate transitions between wood availability categories
Our work contributes to the development of the EFDM approach, in that we extended the area-based Markov chain modelling framework by considering how NFI data could be used for the simulation of shifts between forest management systems. Throughout the study, we use the term “shifts between wood availability categories” to refer to the principle of associating FAWS, FRAWS, and FNAWS (cf., Alberdi et al. 2016; Vauhkonen and Packalen 2017) with different silvicultural systems and shifted areas, represented by NFI plots within these categories. Such large-area changes could result from the adoption of less intensive silviculture practices due to voluntary or enforced changes in forest use. Similar principles could also be employed for simulating shifts between afforestation/reforestation and deforestation categories (e.g. Grassi et al. 2012), which are often included in the modelling of carbon dynamics due to joint forestry and other land-use changes.
The areas shifted between the wood availability categories were selected based on conservation value predicted for each NFI plot as a function of site characteristics and species-specific volume and mean diameter of the growing stock (Lehtomäki et al. 2015). Similar proxy values have been used for conservation (Lehtomäki et al. 2009; Arponen et al. 2012; Sirkiä et al. 2012) or management prioritization (Vauhkonen and Ruotsalainen 2017), when plant mapping data have not been available for more detailed analyses. The application of the functions yielded the highest conservation values for forests with large trees, more than one species, and high site fertility. Aside from ecology and conservation, the maturity, average tree size, and species composition of a forest are more indicative of the general multiple-use potential of a forest, because similar attributes are also used to predict recreational and scenic values and yields of non-wood forest products (Pukkala et al. 1988; Miina et al. 2016).
Our MUL and MUCL alternatives were variants of the “third-of-third rule-of-thumb” designed for conservation planning (Hanski 2011). By assuming proportions other than the constant third and different management practices for the non-protected area, we can draw conclusions on the likely impacts due to the shift between alternative forest management systems beyond what is solely related to conservation. Following Hanski (2011), the land area that shifted between the wood availability categories was “located as evenly as possible across regions and countries to guarantee representativeness”. However, a spatially explicit approach was not used in allocating MUCLs close to existing protected area networks, as recommended by Rybicki and Hanski (2013). It could also be possible to assess national-scale impacts due to such decisions, based on spatial conservation prioritization frameworks (Lehtomäki et al. 2009, 2015).
Both the MUCL and MUL alternatives were simulated with the assumption that emphases on the shifted land be placed on forests with either high or low conservation proxy values. For example, forest conservation would obviously benefit if the forests with the highest conservation values were set aside, which might not be feasible for at least two reasons. First, as mentioned above, detailed plant mapping data are not available for the prioritization of forests for conservation (when examined at broad geographical scales), so analyses must instead be based on indirect conservation value proxies derived from general forest inventory data (cf., Lehtomäki et al. 2009, 2015). Second, based on such information, forests that are mature and highly stocked are considered of high conservation value, but are obviously valuable for alternative uses as well. Due to the opportunity costs and the restricted availability of forests with the highest conservation values (as measured by the consval index), any practical implementable extension to an existing conservation network must also include areas with lower values (see also Schröter et al. 2014; Lundström et al. 2016). Forests with lower values could be considered valuable for the production of specific ecosystem services but also for conservational purposes, if assessed after a few growing seasons (cf., Lundström et al. 2016).
From the discussion above and the results obtained in this study, it is clear that future forest projections will vary depending on assumptions of land availability for integrated management. Yet, opportunity costs or land availability are rarely considered, even in spatial prioritization studies (but see Moilanen et al. 2011; Schröter et al. 2014). Pang et al. (2017) assumed that the proportion of the landscape known to have high nature conservation, cultural, or recreational values would be subject to less intensive management. Peura et al. (2018) assumed that alternative management was adopted over an entire landscape, which is not realistic in practice due to fragmented land ownership and, consequently, non-uniform management objectives across the landscape. In their simulations based on the Finnish NFI10 data, Alrahahleh et al. (2016) increased the conservation area by 10% or 20%; when the sample plots used for conservation were selected in random (but with a probability related to basal area), sites not feasible or available for conservation may be emphasized, as reasoned above. In Solberg et al. (2017), the allocation was solved by means of optimization. It is unclear to what degree the aforementioned studies may exaggerate future development, if the shifts between management systems do not occur at the assumed magnitude. In contrast to many earlier large-area analyses (see also Verkerk et al. 2014; Creutzburg et al. 2017; Mouchet et al. 2017), our simulations were run with varying proportions of land shifts determined by different strategies. Using this approach, we largely circumvent the problem related to placing assumptions on the type of management applied in a specific area. The curves based on the simulations with the emphases on high and low consval could be interpreted as a range of production possibilities that are feasible depending on land availability.
Limitations and strengths of the Markov chain modelling approach in forest development simulations
Our projection of the forest development that follows the simulated shifts between wood availability categories was based on a similar parameterization of the Markov chain model, based on permanent NFI plot data, described by Vauhkonen and Packalen (2017). Here, we implicitly assume that even if the shifts between the wood availability categories were to take place, the future development of the forests in these categories corresponds to NFI observations from current FAWS, FRAWS, and FNAWS. The realism of these assumptions should be considered, especially from the perspective of the increased use of thinnings from above due to the shifts to the FRAWS category.
As discussed in more detail by Vauhkonen and Packalen (2017), the data used for computing the transition probabilities should include an adequate number of observations of plots thinned during earlier management periods to correctly reproduce post-thinning recovery and development in the subsequent simulation steps. The validity of this assumption should be examined from two aspects. First, in this study we did not have the means to explicitly determine how many plots in the NFI data were at a developmental stage comparable to forests thinned from above. Instead, we relied on the extent of the NFI sample, but acknowledge that as most of the managed forests in Finland are traditionally thinned from below, the predicted post-thinning stand dynamics might not perfectly coincide with uneven-aged forests. Second, a fundamental principle related to Markov chains is the assumption that the future forest state depends only on the present state and not on the preceding events. Therefore, in principle, there is nothing to prevent the same areas from being thinned more often than would be feasible, with respect to a proper recovery period, in the subsequent simulation steps. However, similar considerations could also be applied to other studies that have compared even-aged management and continuous cover forestry. For example, while Peura et al. (2018) used growth models formulated for uneven-aged forests (Pukkala et al. 2013) to simulate post-thinning dynamics, it is unclear whether the forests in the model fitting data of Pukkala et al. (2013) were selectively harvested in sequences, e.g. approximately every 15 years that was assumed to be continued for 100 years (Peura et al. 2018). In other words, even if a growth model suggests that selective harvests can be continued in such sequences, it is unclear if this is feasible in practice.
The Markov chain model only projects the development of the forest area distribution, whereas all other outputs must be derived indirectly via coefficients. In addition to the averaging of the discrete classes used in the matrices, as further elaborated by Vauhkonen and Packalen (2017), there may be inaccuracies in the models used to derive the output coefficients. First, the degree of variation explained by the models may vary, especially in the case of biomass components and conversion factors (cf., Neumann et al. 2016). Second, the coefficient values for the harvesting costs cannot be directly obtained as averages of NFI data, but are based on a modelling chain from time expenditure to costs. We acknowledge that the unit costs reported in Sect. 3 are higher than those that would result from real-world harvesting operations or reported in other studies (e.g. Kärkkäinen et al. 2018). Assuming business-as-usual management, our modelling chain yielded unit costs of 21.5 and 18.85 €/m3 for the first simulation step and the entire simulation, respectively, whereas the realized costs varied from 10 to 12 €/m3 in 2007–2016 (Strandström 2017). This difference may be related to the assumption that the harvests were focused on individual NFI plots, whereas the allocation of real-world harvests would obviously be based on aggregating forests that are to be harvested or otherwise more detailed economic reasoning. If considered as relative values between the management systems, however, the time expenditure should correctly indicate the impacts of acquiring an increased amount of wood from thinnings rather than from final fellings, and coefficient values expressed as costs are likely to be more informative than time expenditures. The time expenditure and costs will vary between thinning from below and thinning from above approaches (Appendix 2), but the models formulated by Rummukainen et al. (1995) might not be adequately representative of modern forest operations.
An overall strength of the EFDM approach with respect to all the studies discussed above is the flexibility of the implementation and, therefore, the potential to run multiple scenarios with slightly changed assumptions. Due to the use of NFI data and the area-based matrix model for simulating the development of the forest area distribution, our results are valid for large-area level projections (here for the entire Finland). Yet, the growth and harvesting simulations are based on the individual NFI plots, thereby facilitating a very detailed modelling of the transitions according to different forest types, for example. Therefore, the results of the simulations are less affected by ecosystem model assumptions (cf., Alrahahleh et al. 2016) or optimized allocation of silvicultural treatments (cf., Hynynen et al. 2015; Heinonen et al. 2017, 2018; Solberg et al. 2017). As demonstrated above, expert opinion on changes in activities or allocations can be added to the modelling framework, corresponding to future land-use–climate policies. The activity/transition probability matrices and the output coefficients (i.e. the entire parameterization of EFDM) can be fundamentally modified according to the needs of the analysis, which might not be true for all corresponding simulators without accessing their source code.
Further aspects for comparisons between even- and uneven-aged management systems
Our simulations do not include the effects of biotic or abiotic damages. However, this should not affect the comparisons of the simulated alternatives, unless the disturbances are more frequent in some of them. In this sense, different forms of uneven-aged management, such as continuous cover forestry, may be more problematic than even-aged management, especially if applied intensively (Nevalainen 2017). If the occurrence and degree of damages were modelled in terms of the axes of the matrices used in this study (e.g. volume and age) and included as additional activity and transition probabilities, respectively, we could assess the impacts of disturbances based on the Markov chain model framework (see also related discussion in Vauhkonen and Packalen 2018).
The use of the 3% rate of return when simulating thinnings results in relatively large harvest removals, even when maintaining the legislative minimum basal area. An ecological perception of feasible management practices in the proportion of the MUCLs that are not strictly protected could differ from those simulated. A more diversified set of management or natural interventions could have been considered here to mimic forms of uneven-aged management other than continuous cover forestry (Puettmann et al. 2015; Pukkala 2016a). Our simulations could also be extended to cover the responses to different harvests (Mehtätalo et al. 2014; Montoro Girona et al. 2017; Bose et al. 2018; see also Roessiger et al. 2016) or improved silvicultural performance due to operations, such as ditching, fertilization and the use of improved genetic material for regeneration (cf., Hynynen et al. 2015; Heinonen et al. 2018).
We did not include any ecological measure similar to those related to carbon and harvests. The additional set-aside area could be used as such a measure, because ecological values often benefit from no management (e.g. Sutherland et al. 2016). However, this conclusion is not exclusive for provisioning services or even all habitat services (cf., Peura et al. 2018). Our analyses could be extended using species-specific habitat suitability indices as in Pukkala (2016b) and Peura et al. (2018). Overall, a specific management system might not benefit all services and, moreover, the benefits could be site dependent (Biber et al. 2015; van der Plas et al. 2018), although alternative management may be focused on forests based on totally different criteria than suitability for a specific site. For example, continuous cover forestry could be a logical choice for poorly productive forests because of the low economic profitability of even-aged management systems. Similar scenario analyses, as carried out in this study, could be run to compare different management systems on specific sites, such as poorly productive, drained peatlands in Finland (cf. Nieminen et al. 2018), and this could be carried out with respect to a wider selection of ecosystem services and choices related to management regimes than considered in our study.
Concluding remarks on the implications of large-area forest management
The simulated large-area shifts from conventional even-aged management to alternative silvicultural systems revealed interesting development patterns that cannot be directly deduced from studies that are based on individual forest stands or holdings and upscaled to larger areas. At the national scale, the simulated development of carbon storage in the above- and below-ground living biomass, harvest removal, and harvesting costs differed depending on the forest type and the size of the area assumed to diverge from the business-as-usual management approach. Our results would suggest that it could be beneficial, with respect to the national wood supply, if large-scale adoption of the alternative management practices initially commenced in the less productive forests.
The forests selected to transit from even-aged to alternative management according to the higher values of the consval index (i.e. MUCLhigh, MULhigh strategies) would provide large amounts of timber as FAWS. When assigned to alternative management systems, harvesting becomes less efficient in terms of both removals and costs, because a portion of the trees remain in the forest and the trees that are removed must be acquired through selective harvests. In addition, the carbon storage in the above- and below-ground living biomass increased most when the shifts between management systems were realized according to the MUCLlow strategy. In this strategy, the forests that shifted to continuous cover forestry were generally less densely stocked, less fertile and had a low number of species, i.e. the selection emphasized the low values of the conservation value proxy. However, one-third of every p% selected by this strategy was always set aside and this proportion was emphasized in forests that were densely stocked, fertile and had a higher number of species, i.e. highest values of the conservation value index within the selected p%. With such an allocation, the forests that were set aside effectively increased carbon storage. The effects of harvest removals and costs were minor, because the majority of the most densely stocked FAWS remain for wood production in even-aged management rotations. On the other hand, the amount of thinnings from above increased towards the end of the simulation, i.e. when the growth of the initially less densely stocked forests permitted an increasing number of harvests; exhibited as a slight increase in harvesting costs at the end of the simulation. A period of altogether 50 years was simulated; if the simulations were to be extended beyond 2060, it would lead to an increase in other uncertainties that should be considered in separate analyses.
Analyses of our results from the point of view of different decision makers can provide further insights, illustrated here by three examples:
-
A MUCL alternative with p = 33% would correspond to the “third-of-third rule-of-thumb” (Hanski 2011), according to which one-third of the land area should be managed as a “multi-use conservation landscape” and one-third of this proportion be strictly protected. Even if this alternative could meet the conservational aims as reasoned by Hanski (2011), the solution is inefficient with respect to carbon storage or harvesting. Solutions that are more feasible in aspects other than conservation could be found by examining the data in Figs. 1, 2, 3, 4, and 5 by means of multi-criteria decision analyses or corresponding tools involving the preferences of the different stakeholder groups. We did not optimize forest management for any of the objectives mentioned in this paragraph.
-
In addition to the simulated shifts of FAWS to FRAWS or FNAWS, Figs. 1, 3, 4, and 5 include a reference projection, where all forests are managed as FAWS. This demonstrates that about 20% of the forest area studied here is already subject to restrictions that prevent the use of heavy harvesting operations, such as final felling. If additional enforced restrictions were considered, it could be beneficial to compare their favourable effects with those already achieved under the current restrictions (cf., Sect. 3.3.).
-
Studies based on individual forest stands or holdings often present uneven-aged forest management alternatives as highly attractive to forest owners due to the potential to obtain higher profits by avoiding regeneration costs and by reducing capital costs through the removal of the largest trees in selective harvests. If alternative management systems are adopted over large areas and similar harvesting totals (as realized in the past; cf. MAF 2015) are still expected, the harvesting becomes inevitably more costly with selective harvests than final fellings. It is not clear as to who will pay the increased costs of wood procurement. The proportion of forests managed under different silvicultural systems is likely to depend on the resulting market mechanisms that probably differ depending on whether the shifts between management systems are enforced or voluntary.