Skip to main content
Log in

Perspectives for genetic improvement in heartwood size and extractive content in relation to natural durability and aesthetics in interspecific hybrid larch (Larix × eurolepis)

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Larch heartwood is the only valuable part of timber when natural durability and aesthetics are requested for end-use products. Therefore, improvement in both quantitative and qualitative properties of heartwood will benefit industry. Genetic variation of heartwood size, extractive content in relation to decay resistance and of colour was studied in 40 full-sib progenies of hybrid larch (Larix × eurolepis) at age 21. Expected genetic gains from various selection scenarios were then investigated. Among all traits studied, extractive contents (total phenols, taxifolin and DHK) showed the highest variability both at the individual (e.g. for taxifolin 3–42 mg g−1 DW) and mean family (e.g. for taxifolin 10–21 mg g−1 DW) levels with heritabilities over 0.66. In contrast, CIELAB colour parameters together with ring density were the least variable, but their heritabilities were close to those of the extractives. Heartwood diameter showed a FS-family mean heritability close to that of radial growth (0.68). European larch (female parent) seemed to play a major role in the genetic control of extractives content, colour and density in the hybrid, while Japanese larch (male) contributed most to the variability for radial growth and heartwood size. Direct selection for heartwood extractive content and heartwood size looked promising with expected gains over 24 and 14 %, respectively (i = 2.043), but it was much less efficient for colour parameters (6 % at most) whatever the selection methods tested. Our study showed that it is still possible to jointly improve radial growth, heartwood size and its extractive content with some success (gains around 10 %) without costly chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amusant N, Fournier M, Beauchene J (2008) Colour and decay resistance and its relationships in Eperua grandiflora. Ann For Sci 65(8):806p1–806p6

    Article  Google Scholar 

  • Anonymous (1995) S-Plus, Guide to statistical and mathematical analysis. StatSci Division, MathSoft Inc, Seattle, Wa

  • Baradat P, Labbé T, Bouvet JM (1995) Conception d’index pour la sélection réciproque récurrente. Aspects génétiques, statistiques et informatiques. In: CIRAD (ed) Traitements statistiques des essais de sélection, pp 101–150

  • Björklund L (1999) Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data. Silva Fennica 33(2):119–129

    Article  Google Scholar 

  • Bush D, McCarthy K, Meder R (2011) Genetic variation of natural durability traits in Eucalyptus cladocalyx (sugar gum). Ann For Sci 68(6):1057–1066

    Article  Google Scholar 

  • Curnel Y, Jacques D, Gierlinger N, Pâques LE (2008) Variation in the decay resistance of larch to fungi. Ann For Sci 65(8):810p1–810p8. doi:10.1051/forest:2008062

    Article  Google Scholar 

  • Ericsson T, Fries A, Gref R (2001) Genetic correlations of heartwood extractives in Pinus sylvestris progeny tests. For Genet 8(1):73–79

    Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics. Longman, London

    Google Scholar 

  • Fries A, Ericsson T, Gref R (2000) High heritability of wood extractives in Pinus sylvestris progeny tests. Can J For Res 30(11):1707–1713

    Article  CAS  Google Scholar 

  • Gambetta A, Susco D, Zanuttini R (2004) Determination of the natural durability of larch wood (Larix decidua Mill.) from the Western Italian Alps. Holzforschung 58(6):678–681

    Article  CAS  Google Scholar 

  • Gierlinger N, Wimmer R (2004) Radial distribution of heartwood extractives and lignin in mature European larch. Wood Fiber Sci 36(3):387–394

    CAS  Google Scholar 

  • Gierlinger N, Jacques D, Schwanninger M, Wimmer R, Hinterstoisser B, Pâques LE (2003) Rapid prediction of natural durability of larch heartwood using Fourier transform near-infrared spectroscopy. Can J For Res 33(9):1727–1736

    Article  Google Scholar 

  • Gierlinger N, Jacques D, Grabner M, Wimmer R, Schwanninger M, Rozenberg P, Pâques LE (2004a) Colour of larch heartwood and relationships to extractives and brown-rot decay resistance. Trees Struct Funct 18(1):102–108

    Article  Google Scholar 

  • Gierlinger N, Jacques D, Schwanninger M, Wimmer R, Pâques LE (2004b) Heartwood extractives and lignin content of different larch species (Larix sp.) and relationships to brown-rot decay-resistance. Trees Struct Funct 18(2):230–236

    Article  CAS  Google Scholar 

  • Guilley E, Charpentier JP, Ayadi N, Snakkers G, Nepveu G, Charrier B (2004) Decay resistance against Coriolus versicolor in sessile oak (Quercus petraea Liebl): analysis of the between-tree variability and correlations with extractives, tree growth and other basic wood properties. Wood Sci Technol 38(7):539–554

    Article  CAS  Google Scholar 

  • Harju AM, Venäläinen M (2002) Genetic parameters regarding the resistance of Pinus sylvestris heartwood to decay caused by Coniophora puteana. Scand J For Res 17:199–205

    Article  Google Scholar 

  • Harju AM, Venäläinen M (2006) Measuring the decay resistance of Scots pine heartwood indirectly by the Folin-Ciocalteu assay. Can J For Res 36(7):1797–1804

    Article  Google Scholar 

  • Harju AM, Venäläinen M, Anttonen S, Viitanen H, Kainulainen P, Saranpää P, Vapaavuori E (2003) Chemical factors affecting the brown-rot decay resistance of Scots pine heartwood. Trees 17:236–268

    Google Scholar 

  • Harju AM, Venäläinen M, Haapanen M (2009) Association of growth with high heartwood quality in Scots pine. In: Bergstedt A (ed) Proceedings of the 5th meeting of the Nordic-Baltic network in wood material science and engineering (WSE) October 1–2, 2009 Copenhagen, Denmark. Forest and Landscape Working Papers 43, pp 79–84

  • Hirai S (1952) The early stage of the transformation of sapwood of Japanese larch into heartwood. Res Bull Coll Exp For Hokkaido Univ 15:239–253

    Google Scholar 

  • Kain DP (2003) Genetic parameters and improvement strategies for the Pinus elliottii var.elliottii x Pinus caribaea var.hondurensis hybrid in Queensland, Australia. Dissertation: Australian national University

  • Kerr RJ, Dieters MJ, Tier B (2004a) Simulation of the comparative gains from four different hybrid tree breeding strategies. Can J For Res 34(1):209–220

    Article  Google Scholar 

  • Kerr RJ, Dieters MJ, Tier B, Dungey HS (2004b) Simulation of hybrid forest tree breeding strategies. Can J For Res 34(1):195–208

    Article  Google Scholar 

  • Kilpeläinen A, Peltola H, Ryyppo A, Kellomaki S (2005) Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties. Tree Physiol 25(1):75–83

    Article  PubMed  Google Scholar 

  • Kokutse AD, Stokes A, Baillères H, Kokou K, Baudasse C (2006) Decay resistance of Togolese teak (Tectona grandis L.f) heartwood and relationship with colour. Trees Struct Funct 20(2):219–223

    Article  Google Scholar 

  • Leinonen A, Harju AM, Venäläinen M, Saranpaa P, Laakso T (2008) FT-NIR spectroscopy in predicting the decay resistance related characteristics of solid Scots pine (Pinus sylvestris L.) heartwood. Holzforschung 62(3):284–288

    Article  CAS  Google Scholar 

  • Lelu-Walter MA, Pâques LE (2009) Integration of somatic embryogenesis in a breeding programme of hybrid larches (Larix × eurolepis and Larix × marschlinsii). Ann For Sci 66:104

    Article  Google Scholar 

  • Magnussen S (1990) Selection index: economic weights for maximum simultaneous genetic gain. Theor Appl Genet 79:289–293

    Article  CAS  PubMed  Google Scholar 

  • Morais MC, Pereira H (2012) Variation of extractives content in heartwood and sapwood of Eucalyptus globulus trees. Wood Sci Technol 46:709–719

    Article  CAS  Google Scholar 

  • Pâques LE (2001) Genetic control of heartwood content in larch. Silvae Genet 50(2):69–75

    Google Scholar 

  • Pâques LE (2004) Role of European and Japanese larch in the genetic control of growth, architecture and wood quality traits in interspecific hybrids (Larix × eurolepis Henry). Ann For Sci 61:25–33

    Article  Google Scholar 

  • Pâques LE, Foffova E, Heinze B, Lelu-Walter MA, Liesebach M, Philippe G (2013a) Larches (Larix sp). In: Pâques LE (ed) Forest tree breeding in Europe. Springer, Dordrecht, pp 13–122

    Chapter  Google Scholar 

  • Pâques LE, García-Casas MdC, Charpentier JP (2013b) Distribution of heartwood extractives in hybrid larches and in their related European and Japanese larch parents: relationship with wood colour parameters. Eur J For Res 132(1):61–69

    Article  Google Scholar 

  • Partanen J, Harju AM, Venäläinen M, Karkkainen K (2011) Highly heritable heartwood properties of Scots pine: possibilities for selective seed harvest in seed orchards. Can J For Res 41(10):1993–2000

    Article  CAS  Google Scholar 

  • QB Yu, DQ Yang, Zhang SY, Beaulieu J, Duchesne I (2003) Genetic variation in decay resistance and its correlation to wood density and growth in white spruce. Can J For Res 33(11):2177–2183

    Article  Google Scholar 

  • Sykacek E, Gierlinger N, Wimmer R, Schwanninger M (2006) Prediction of natural durability of commercial available European and Siberian larch by near-infrared spectroscopy. Holzforschung 60(6):643–647. doi:10.1515/HF.2006.108

    Article  CAS  Google Scholar 

  • Taylor AM, Gartner BL, Morrell JJ (2003) Co-incident variations in growth rate and heartwood extractive concentration in Douglas-fir. For Ecol Manage 186(1/3):257–260

    Article  Google Scholar 

  • Taylor AM, Gartner BL, Morrell JJ (2006) Western red cedar extractives: is there a role for the silviculturist? For Prod J 56(3):58–63

    CAS  Google Scholar 

  • Venäläinen M (2002) Decay resistance of heartwood timber as a quality characteristic in Scots pine breeding. Dissertation, University Helsinki

  • Venäläinen M, Harju AM, Nikkanen T, Paajanen L, Velling P, Viitanen H (2001) Genetic variation in the decay resistance of Siberian larch (Larix sibirica Ledeb.) wood. Holzforschung 55(1):1–6

    Article  Google Scholar 

  • Venäläinen M, Harju AM, Kainulainen P, Viitanen H, Nikulainen H (2003) Variation in the decay resistance and its relationship with other wood characteristics in old Scots pines. Ann For Sci 60(5):409–417

    Article  Google Scholar 

  • Venäläinen M, Harju AM, Saranpaa P, Kainulainen P, Tiitta M, Velling P (2004) The concentration of phenolics in brown-rot decay resistant and susceptible Scots pine heartwood. Wood Sci Technol 38(2):109–118

    Article  Google Scholar 

  • Venäläinen M, Harju AM, Terziev N, Laakso T, Saranpaa P (2006) Decay resistance, extractive content, and water sorption capacity of Siberian larch (Larix sibirica Lebed.) heartwood timber. Holzforschung 60(1):99–103

    Article  Google Scholar 

  • Verger M, Pâques LE (1993) Multiplication végétative du mélèze hybride (Larix × eurolepis Henry) par bouturage en vrac. Ann Sci For 50:205–215

    Article  Google Scholar 

  • Windeisen E, Wegener G (2003) Chemische Untersuchungen von Hochzucht-Larchen. Holz als Roh- und Werkstoff 61(5):394–397

    Article  CAS  Google Scholar 

  • Windeisen E, Wegener G, Lesnino G, Schumacher P (2002) Investigation of the correlation between extractives content and natural durability in 20 cultivated larch trees. Holz als Roh- und Werkstoff 60(5):373–374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was conducted thanks to a research grant (projet innovant) from the Institut National de la Recherche Agronomique—EFPA Department. We are grateful to F. Millier for the field work and M. del Carmen García-Casas (ALFA-GEMA European project 2004-2007 grant), N. Boizot and K. Ader, for laboratory analysis. All the chemical results were obtained within the regional technical platform “GénoBois” (INRA Orléans Laboratory). We also thank the two anonymous reviewers for their useful comments and suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc E. Pâques.

Additional information

Communicated by Martina Meincken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pâques, L.E., Charpentier, JP. Perspectives for genetic improvement in heartwood size and extractive content in relation to natural durability and aesthetics in interspecific hybrid larch (Larix × eurolepis). Eur J Forest Res 134, 857–868 (2015). https://doi.org/10.1007/s10342-015-0895-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0895-x

Keywords

Navigation