Skip to main content
Log in

Combining banker plants to achieve long-term pest control in multi-pest and multi-natural enemy cropping systems

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Banker plants increase biological pest control by supporting populations of non-pest arthropod species, used as alternative hosts or prey by natural enemies. Due to the specificity of trophic interactions, banker plants may not efficiently promote natural enemies with different ecologies. Yet in most cropping systems, different pest species are present together and require different biocontrol agents to efficiently control them. In the present study, we tested the combined use of two banker plants and their associated prey/host to enhance populations of the specialist parasitoid Encarsia formosa targeting the main tomato pest Bemisia tabaci, and a polyphagous ladybird Propylea japonica targeting the secondary pest Myzus persicae in tomato crops. In a laboratory and a greenhouse experiment, we measured the abundances of these four species using the Ricinus communisTrialeurodes ricini banker plant system alone, in combination with the Glycines maxMegoura japonica system, or in absence of banker plants. We found that the first banker plant system enhanced populations of E. formosa, resulting in increased suppression of B. tabaci populations and the suppression of their outbreak in both our laboratory and greenhouse experiment. Conversely, abundances of P. japonica were not affected by this first system, but were significantly increased when the second was present. This resulted in increased control of M. persicae populations and the suppression of their early and late outbreaks. Our study demonstrates the potential for combined banker plants to provide long-term, sustainable control of multiple pests by their target natural enemies in complex agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albajes R, Ghullino ML, van Lenteren JC, Elad Y (2000) Integrated pest and disease management in greenhouse crops. Luwer Academic Publishers, Dordrecht, Netherlands

    Google Scholar 

  • Andorno AV, López SN (2014) Biological control of Myzus persicae (Hemiptera: Aphididae) through banker plant system in protected crops. Biol Control 78:9–14. https://doi.org/10.1016/j.biocontrol.2014.07.003

    Article  Google Scholar 

  • Ap H, Dk S, Devee A (2019) Population dynamics and management of whitefly, Bemisia tabaci in tomato ecosystem, Solanum lycopersicum L. J Entomol Zool Stud 7:1232–1235

    Google Scholar 

  • Aparicio Y, Gabarra R, Arno J (2020) Interactions among Myzus persicae, predators and parasitoids may hamper biological control in Mediterranean peach orchards. Entomol Gen 40:217–228

    Article  Google Scholar 

  • Barbosa P (1998) Conservation biological control. Academy Press, London, UK

    Book  Google Scholar 

  • Bates D, Maechler N, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bhattacharyya S, Sinha S (2009) Ecological networks: structure, interaction strength, and stability. In: Ganguly N, Deutsch A, Mukherjee A (eds) Dynamics on and of complex networks modeling and simulation in science, engineering and technology. Birkhäuser, Boston, US

    Google Scholar 

  • Bianchi FJJ, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc Biol Sci 273:1715–1727. https://doi.org/10.1098/rspb.2006.3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacón JM, Heimpel GE (2010) Density-dependent intraguild predation of an aphid parasitoid. Oecologia 164:213–222. https://doi.org/10.1007/s00442-010-1611-7

    Article  PubMed  Google Scholar 

  • Chailleux A (2013) Importance of multi-trophic interactions in agro-ecosystems for the development of biological control programs against an invasive species. PhD thesis, University of Nice, 290

  • Chailleux A, Biondi A, Han P, Tabone E, Desneux N (2013) Suitability of the pest-plant system Tuta absoluta (Lepidoptera: Gelechiidae) tomato for Trichogramma (Hymenoptera: Trichogrammatidae) parasitoids and insights for biological control. Econ Entomol 106:2310–2321. https://doi.org/10.1603/EC13092

    Article  Google Scholar 

  • Chailleux A, Wajnberg E, Zhou Y et al (2014a) New parasitoid-predator associations: female parasitoids do not avoid competition with generalist predators when sharing invasive prey. Naturwissenschaften 101:1075–1083. https://doi.org/10.1007/s00114-014-1246-3

    Article  CAS  PubMed  Google Scholar 

  • Chailleux A, Mohl EK, Teixeira Alves M, Messelink GJ, Desneux N (2014b) Natural enemy-mediated indirect interactions among prey species: potential for enhancing biocontrol services in agroecosystems. Pest Manag Sci 70:1769–1779. https://doi.org/10.1002/ps.3916

    Article  CAS  PubMed  Google Scholar 

  • Chailleux A, Droui A, Bearez P, Desneux N (2017) Survival of a specialist natural enemy experiencing resource competition with an omnivorous predator when sharing the invasive prey Tuta absoluta. Ecol Evol 7:8329–8337. https://doi.org/10.1002/ece3.3396

    Article  PubMed  PubMed Central  Google Scholar 

  • Dainese M, Schneider G, Krauss J, Steffan-Dewenter I (2017) Complementarity among natural enemies enhances pest suppression. Sci Rep 7:8172. https://doi.org/10.1038/s41598-017-08316-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damien M, Llopis S, Desneux N, van Baaren J, Le Lann C (2020) How does floral nectar quality affect life history strategies in parasitic wasps? Entomol Gen 40:147–156

    Article  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Kaplan I, Yoo HJS, Wang S, O’Neil RJ (2019) Temporal synchrony mediates the outcome of indirect effects between prey via a shared predator. Entomol Gen 39:127–136

    Article  Google Scholar 

  • Enkegaard A (2011) Temperature dependent functional response of Encarsia formosa parasitizing the Poinsettia-strain of the cotton whitefly, Bemisia tabaci, on Poinsettia. Entomol Exp Appl 73:19–29. https://doi.org/10.1111/j.1570-7458.1994.tb01835.x

    Article  Google Scholar 

  • Fonseca MM, Pallini A, Nascimento PHMG, Lima E, Janssen A (2020) Compatibility of two predator species for biological control of the two-spotted spider mite. Exp Appl Acarol 80:409–422. https://doi.org/10.1007/s10493-020-00472-8

    Article  PubMed  Google Scholar 

  • Frank SD (2010) Biological control of arthropod pests using banker plant systems: past progress and future directions. Biol Control 52:8–16. https://doi.org/10.1016/j.biocontrol.2009.09.011

    Article  Google Scholar 

  • Garey L, Ruffié J (1987) The population alternative: a new look at competition and the species. Penguin Books, UK

    Google Scholar 

  • Hall RJ (2011) Intraguild predation in the presence of a shared natural enemy. Ecology 92:352–361. https://doi.org/10.1890/09-2314.1

    Article  PubMed  Google Scholar 

  • Hansen LS (1983) Introduction of Aphidoletes aphidiumzya (Rond) (Diptera: Cecidomyiidae) from an open rearing unit for control of aphids in glasshouses. Bulletin SROP 6:146–150

    Google Scholar 

  • Hartig (2020) DHARMa: residual diagnostics for hierarchical (Multi-level/Mixed) regression models. R package version 0.3.3.0. https://CRAN.R-project.org/package=DHARMa

  • Heimpel GE, Mills N (2008) Biological control: ecology and applications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Huang NX, Enkegaard A, Osborne LS, Ramakers PMJ, Messelink GJ, Pijnakker J, Murphy G (2011) The banker plant method in biological control. Crit Rev Plant Sci 30:259–278. https://doi.org/10.1080/07352689.2011.572055

    Article  Google Scholar 

  • Huang H, Zhao H, Zhang Y-M, Zhang S-Z, Liu T-X (2014) Influence of selected host plants on biology of castor whitefly, Trialeurodes ricini (Hemiptera: Aleyrodidae). J Asia-Pacific Entomol 17:745–751. https://doi.org/10.1016/j.aspen.2014.07.001

    Article  Google Scholar 

  • Huang NX, Jaworski CC, Desneux N, Zhang F, Yang PY, Wang S (2020) Long-term and large-scale releases of Trichogramma promote pesticide decrease in maize in northeastern China. Entomol Gen 40:331–335

    Article  Google Scholar 

  • Hullé M, Chaubet B, Turpeau E, Simon JC (2020) Encyclop’Aphid: a website on aphids and their natural enemies. Entomol Gen 40:97–101

    Article  Google Scholar 

  • Jaworski CC, Chailleux A, Bearez P, Desneux N (2015) Apparent competition between major pests reduces pest population densities on tomato crop, but not yield loss. J Pest Sci 88:793–803. https://doi.org/10.1007/s10340-015-0698-3

    Article  Google Scholar 

  • Jaworski CC, Xiao D, Xu QX, Ramirez-Romero R, Guo XJ, Wang S, Desneux N (2019) Varying the spatial arrangement of synthetic herbivore-induced plant volatiles and companion plants to improve conservation biological control. J Appl Ecol 56:1176–1188. https://doi.org/10.1111/1365-2664.13353

    Article  CAS  Google Scholar 

  • Kuroda T, Miura K (2003) Comparison of the effectiveness of two methods for releasing Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) against Aphis gossypii Glover (Homoptera: Aphididae) on cucumbers in a greenhouse. Appl Entomol Zool 38:271–274. https://doi.org/10.1303/aez.2003.271

    Article  Google Scholar 

  • Lange WH, Bronson L (1981) Insect pest of tomatoes. Annu Rev Entomol 26:45–71. https://doi.org/10.1146/annurev.en.26.010181.002021

    Article  Google Scholar 

  • Laurenz S, Meyhofer R (2021) Banker plants promote functional biodiversity and decrease populations of the cabbage whitefly Aleyrodes proletella. J Appl Entomol 145:36–45. https://doi.org/10.1111/jen.12831

    Article  Google Scholar 

  • Lenth RV (2021) Emmeans: estimated marginal means, aka least-squares means. R package version 1.5.4. https://CRAN.R-project.org/package=emmeans

  • Li WD, Zhang SZ, Liu TX (2011) Effect of temperature on development and growth of Propylea japonica and Harmonia axyridis reared on Megoura japonica. Proceedings of international symposium on mass production and commercialization of arthropod biological control agents, pp 44

  • Liang Y, Xu C, Dai H, Wang J, Guo X, Wang S, Jaworski CC (2021) Flower provision helps reduce intraguild predation among predatory ladybirds and increases biological control of aphids in a greenhouse crop. J Pest Sci. https://doi.org/10.1007/s10340-021-01396-x

    Article  Google Scholar 

  • Liu WX, Zhang YB, Wan FH (2008) Preference and fitness of Propylea japonica (Thunberg) feeding cotton aphid, Aphis gossypii Glover, and cotton whitefly, Bemisia tabaci (Gennadius). China J Biol Control 24:293–297

    Google Scholar 

  • Liu YJ, Yu JX, Zhou G, Dai LX, Yang ZQ, Zhang LN (2012) Evaluation of biological control of Monochamus alternatus by releasing Scleroderma sichuanensis and Dastarus helophoroides. Hunan For Sci Technol 39:20–23

    Google Scholar 

  • Liu LZ, Dai P, Lv B, Zang LS, Du WM, Wan FH (2013) Interspecific competition between Encarsia sophia and E. formosa and their impacts on suppression of Trialeurodes vaporariorum. Sci Agric Sin 46:4837–4841

    Google Scholar 

  • Lu CY, Yang DF, Shen GQ, Shen MX, Ma HM, Wu TD, Liu FJ (2004) Preliminary survey of aphids outbreaks on greenhouse tomato. Shanghai Agric Technol 6:84–85

    Google Scholar 

  • Ma LJ, Zhang SZ, Liu TX (2018) Influences of interspecific competition between ladybeetle Serangium japonicum and parasitoid Encarsia formosa on predation of tobacco whitefly Bemisia tabaci. J Plant Protect 45:1289–1295

    Google Scholar 

  • Monticelli LS, Desneux N, Heimpel GE (2021) Parasitoid-mediated indirect interactions between unsuitable and suitable hosts generate apparent predation in microcosm and modeling studies. Ecol Evol 11:2449–2460. https://doi.org/10.1002/ece3.6896

    Article  PubMed  PubMed Central  Google Scholar 

  • Naranjo SE, Ellsworth PC, Frisvold GB (2015) Economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645. https://doi.org/10.1146/annurev-ento-010814-021005

    Article  CAS  PubMed  Google Scholar 

  • Orrock JL, Holt RD, Baskett ML (2010) Refuge-mediated apparent competition in plant-consumer interactions. Ecol Lett 13:11–20. https://doi.org/10.1111/j.1461-0248.2009.01412.x

    Article  PubMed  Google Scholar 

  • Osborne LS, Hoelmer K, Gerling D (1990) Prospects for biological control of Bemisia tabaci. IOBC/WPRS Bull 13:153–160

    Google Scholar 

  • Ovchinnikov AN, Belyakova NA, Ovchinnikova AA, Reznik SY (2019) Factors determining larval cannibalistic behavior in invasive and native populations of the multicolored Asian ladybird, Harmonia axyridis. Entomol Gen 38:243–254

    Article  Google Scholar 

  • Parolin P, Bresch C, Poncet C, Desneux N (2012) Functional characteristics of secondary plants for increased pest management. Int J Pest Manag 58:369–377. https://doi.org/10.1080/09670874.2012.734869

    Article  Google Scholar 

  • Pérez-Valencia LI, Camorlinga-Cortés P, Carrillo-Arámbula LC, Palmeros-Suárez PA, Ramirez-Romero R (2019) Why can a predator increase its consumption of prey when it is released along with a parasitoid? Entomol Gen 39:205–219

    Article  Google Scholar 

  • Perovic DJ, Gámez-Virués S, Landis DA et al (2018) Managing biological control services through multi-trophic trait interactions: review and guidelines for implementation at local and landscape scales. Biol Rev 93:306–321. https://doi.org/10.1111/brv.12346

    Article  PubMed  Google Scholar 

  • Sanchez-Hernandez CV, Desneux N, Bao-Fundora L, Ramirez-Romero R (2021) Alternative extraguild prey modifies focal extraguild prey consumption and parasitism but not intraguild predation intensity. Biological Control, 153: 104475. https://doi.org/10.1016/j.biocontrol.2020.104475

  • R Core Team (2020). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org/

  • Shishehbor P, Brennan PA (1996) Life history traits of castor whitefly, Trialeurodes ricini Misra (Hom., Aleyrodidae), on eight host plant species. J Appl Entomol 120:519–522. https://doi.org/10.1111/j.1439-0418.1996.tb01645.x

    Article  Google Scholar 

  • Stiling P, Simberloff D (2000) Nontarget effects of biological control. In: Follett PA, Duan JJ (eds) The frequency and strength of nontarget effects of invertebrate biological control agents of plant pests and weeds. Springer, Boston, MA U.S.A., pp 31–43

    Google Scholar 

  • Tan XL, Zhao J, Wang S, Zhang F (2015) Optimization and evaluation of microencapsulated artificial diet for mass rearing the predatory ladybird Propylea japonica (Coleoptera: Coccinellidae). Insect Sci 22:111–120. https://doi.org/10.1111/1744-7917.12098

    Article  CAS  PubMed  Google Scholar 

  • Tan XL, Hu NN, Zhang F, Ramirez-Romero R, Desneux N, Wang S, Ge F (2016) Mixed release of two parasitoids and a polyphagous ladybird as a potential strategy to control the tobacco whitefly Bemisia tabaci. Sci Rep 6:28245. https://doi.org/10.1038/srep28245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao X, Zhang CY, Fu WY, Xu Y, Liu TX (2018) Control efficacy of tomato Bemisia tabaci by using Encarsia formosa Gahan in greenhouse. J Changjiang Veg 6:78–82

    Google Scholar 

  • van Veen FJF, Memmott J, Godfray HCJ (2006) Indirect effects, apparent competition and biological control. In: Brodeur J, Boivin G (eds) Trophic and guild in biological interactions control. Springer, Netherlands

    Google Scholar 

  • Wäckers FL, van Rijn PCJ (2012) Pick and mix: selecting flowering plants to meet the requirements of target biological control insects. In: Gurr G, Wratten S, Snyder W, Read D (eds) Biodiversity and insect pests. John Wiley & Sons Ltd, Hoboken, pp 139–165

    Chapter  Google Scholar 

  • Wang S, Tan X-L, Guo X-J, Zhang F (2013) Effect of temperature and photoperiod on the development, reproduction, and predation of the predatory ladybird Cheilomenes sexmaculata (Coleoptera: Coccinellidae). J Econ Entomol 106:2621–2629. https://doi.org/10.1603/EC13095

    Article  PubMed  Google Scholar 

  • Wang XS, Chen QZ, Zhang SZ, Liu TX (2016) Parasitism, host feeding and immature development of Encarsia formosa reared from Trialeurodes vaporariorum and Bemisia tabaci on Trialeurodes ricini. J Appl Entomol 140:346–352. https://doi.org/10.1111/jen.12271

    Article  Google Scholar 

  • Wang YS, Yao FL, Soares MA, Basiri SE, Amiens-Desneux E et al (2020) Effects of four non-crop plants on life history traits of the lady beetle Harmonia axyridis. Entomol Gen 40:243–252

    Article  Google Scholar 

  • Xu QX, Wang S, Li S, Hatt S (2020) Conservation biological control in organic greenhouse vegetables. In: Gao Y, Hokkanen HM, Menzler-Hokkanen I (eds) Integrative biological control progress in biological control, vol 20. Springer, Cham

    Google Scholar 

  • Yang NW, Zang LS, Wang S, Guo JY, Xu HX, Zhang F, Wan FH (2014) Biological pest management by predators and parasitoids in the greenhouse vegetables in China. Biol Control 68:92–102. https://doi.org/10.1016/j.biocontrol.2013.06.012

    Article  Google Scholar 

  • Yano E, Abe J, Hemerik L (2018) Evaluation of pest control efficiencies for different banker plant systems with a simple predator–prey model. Popul Ecol 60:389–396. https://doi.org/10.1007/s10144-018-0636-3

    Article  Google Scholar 

  • Zang LS, Wang S, Zhang F, Desneux N (2021) Biological control with Trichogramma in China: history, present status and perspectives. Annu Rev Entomol 66:463–484. https://doi.org/10.1146/annurev-ento-060120-091620

    Article  CAS  PubMed  Google Scholar 

  • Zhang GF, Wu X, Zhou ZX, Meng XQ, Wan FH (2013) A one-step, single tube, duplex PCR to detect predation by native predators on invasive Bemisia tabaci meam1 and Frankliniella occidentalis. Entomol Exp Appl 150:66–73. https://doi.org/10.1111/eea.12134

    Article  CAS  Google Scholar 

  • Zhao J, Guo XJ, Tan XL, Desneux N, Lucia Z, Zhang F, Wang S (2017) Using Calendula officinalis as floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Manag Sci 73:515–520. https://doi.org/10.1002/ps.4474

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Lu Y, Zhu P, Zhang F, Tian J, Xu H, Chen G, Nansen C, Lv Z (2017) Use of banker plant system for sustainable management of the most important insect pest in rice field in China. Sci Rep 7:45581. https://doi.org/10.1038/srep45581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was funded by the project 32072479 supported by National Natural Science Foundation of China, the National Key Research and Development Programme of China (2017YFD0201000; 2018YFD0200402), the Beijing Key Laboratory of Environment Friendly Management of Fruit Diseases and Pests in North China (BZ0432), the Beijing Science and Technology Project (z201100008020014), the Key Research and Development Programme of the Jiangxi Province (202002BBF62006), and the Key Research and Development Programme of Shandong (Public Welfare; 2019GSF109118).

Funding

See acknowledgment section.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su Wang or Lian-Sheng Zang.

Ethics declarations

Conflict of interest

Authors declare they have no competing interests.

Additional information

Communicated by Cesar Rodriguez-Saona.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Jaworski, C.C., Dai, H. et al. Combining banker plants to achieve long-term pest control in multi-pest and multi-natural enemy cropping systems. J Pest Sci 95, 685–697 (2022). https://doi.org/10.1007/s10340-021-01428-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-021-01428-6

Keywords

Navigation