Skip to main content

Advertisement

Log in

Flower provision reduces intraguild predation between predators and increases aphid biocontrol in tomato

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Intraguild predation (IGP)–the predation of a natural enemy species upon another one sharing a prey species–is relatively frequent in both natural and agroecosystems. This may reduce pest control and the establishment of predator populations during mass release of biological control agents or in multi-predator systems due to increased mortality of predators. IGP is exacerbated in isolated and space-limited systems such as greenhouses, due to reduced food resources and movement. Therefore, adding food resources as an alternative to the main prey, such as floral resources, could reduce IGP between natural enemies in these systems. In the present study we investigated the role of supplemental floral resources to help reduce intra- and interspecific IGP involving Harmonia axyridis and Propylea japonica (Coleoptera: Coccinellidae) in laboratory conditions, and we tested its application in a greenhouse setup. We found a significant reduction in intra- and interspecific IGP in laboratory conditions when floral resources were abundant. At a greenhouse scale, abundances of both ladybird species increased when floral resources were abundant, potentially through a combination of enhanced fertility and reduced IGP. This resulted in reduced abundances of aphid pest populations on tomato crops. Our study demonstrates that companion plants in greenhouses can improve pest control in systems with multi-species biological control agent releases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

6. References

  • Albajes R, Ghullino ML, van Lenteren JC, Elad Y (2000) Integrated pest and disease management in greenhouse crops. Luwer Academic Publishers, Dordrecht, Netherlands

    Google Scholar 

  • Albrecht M, Kleijn D, Williams NM, Tschumi M, Blaauw BR, Bommarco R, Campbell AJ, Dainese M, Drummond FA, Entling MH, Ganser D, Arjen de Groot G, Goulson D, Grab H, Hamilton H, Herzog F, Isaacs R, Jacot K, Jeanneret P, Jonsson M, Knop E, Kremen C, Landis DA, Loeb GM, Marini L, McKerchar M, Morandin L, Pfister SC, Potts SG, Rundlöf M, Sardiñas H, Sciligo A, Thies C, Tscharntke T, Venturini E, Veromann E, Vollhardt IM, Wäckers F, Ward K, Wilby A, Woltz M, Wratten S, Sutter L (2020) The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol Lett 23:1488–1498

    PubMed  PubMed Central  Google Scholar 

  • Amarasekare P (2008) Coexistence of intraguild predators and prey in resource-rich environments. Ecology 89:2786–2797

    PubMed  Google Scholar 

  • Aparicio Y, Gabarra R, Arno J (2020) Interactions among Myzus persicae, predators and parasitoids may hamper biological control in Mediterranean peach orchards. Entomol Gen 40:217–228

    Google Scholar 

  • Balzan MV, Bocci G, Moonen AC (2016) Utilization of plant functional diversity in wildflower stripes for the delivery of multiple agroecosystem service. Entomol Exp Appl 158:304–319

    Google Scholar 

  • Barbosa PA (1998) Conservation biological control. Academic Press

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Stat Comput 67:1–48

    Google Scholar 

  • Berkvens N, Landuyt C, Deforce K, Berkvens D, Tirry L, Clercq P (2010) Alternative foods for the multicoloured asian lady beetle Harmonia axyridis (Coleoptera: Coccinellidae). Eur J Entomol 107:189–195

    Google Scholar 

  • Biondi A, Zappalà L, Di Mauro A, Garzia GT, Russo A, Desneux N, Siscaro G (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis. BioControl 61:79–90

    Google Scholar 

  • Bommarco R, Ekborm B (2000) Landscape management and resident generalist predators in annual crop systems. In: Ekbom B, Irwin ME, Robert Y (eds) Interchanges of insects between agricultural and surrounding landscapes. Springer, Netherlands

    Google Scholar 

  • Burgio G, Santi F, Maini S (2002) On intra-guild predation and cannibalism in Harmonia axyridis (Pallas) and Adalia bipunctata L. (Coleoptera: Coccinellidae). Biol Control 24:10–116

    Google Scholar 

  • Cai ZP, Ouyang F, Su JW, Zhang XR, Liu CL, Xiao YL, Zhang JP, Ge F (2020) Attraction of adult Harmonia axyridis to volatiles of the insectary plant Cnidium monnieri. Biol Control 143:104189

    CAS  Google Scholar 

  • Cai Z, Fang O, Chen J, Yang QF, Desneux N, Xiao YL, Zhang J, Ge F (2021) Biological control of Aphis spiraecola in apples using an insectary plant that attracts and sustains predators. Biol Control 155:104532

    CAS  Google Scholar 

  • Chailleux A, Bearez P, Pizzol J, Amiens-Desneux E, Ramirez-Romero R, Desneux N (2013) Potential for combined use of parasitoids and generalist predators for biological control of the key invasive tomato pest Tuta absoluta. J Pest Sci 86:533–541

    Google Scholar 

  • Chailleux A, Stirnemann A, Leyes J, Deletre E (2019) Manipulating natural enemy behavior to improve biological control: attractants and repellents of a weaver ant. Entomol Gen 38:191–210

    Google Scholar 

  • Damien M, Le Lann C, Desneux N, Alford L, Al Hassan D, Georges R, Van Baaren J (2017) Flowering cover crops in winter increase pest control but not trophic link diversity. Agr Ecosyst Environ 247:418–425

    Google Scholar 

  • Damien M, Llopis S, Desneux N, van Baaren J, Lann C (2020) How does floral nectar quality affect life history strategies in parasitic wasps? Entomol Gen 40:147–156

    Google Scholar 

  • Desneux N, Decourtye A, Delpeuch J (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    CAS  PubMed  Google Scholar 

  • Eitzinger B, Abrego N, Gravel D, Huotari T, Vesterinen EJ, Roslin T (2019) Assessing changes in arthropod predator-prey interactions through DNA-based gut content analysis-variable environment, stable diet. Mol Ecol 28:266–280

    CAS  PubMed  Google Scholar 

  • El-Kareim A, Rashed AA, Marouf AE, Fouda SR (2019) Attractiveness and effects of some flowering plants on the longevity and foraging behavior of certain predatory insects. J Plant Protect Pathol 10:537–541

    Google Scholar 

  • Fedriani JM, Fuller TK, Sauvajot RM, York EC (2000) Competition and intraguild predation among three sympatric carnivores. Oecologia 125:258–270

    PubMed  Google Scholar 

  • Foti MC, Peri E, Wajnberg E, Colazza S, Rostás M (2019) Contrasting olfactory responses of two egg parasitoids to buckwheat floral scent are reflected in field parasitism rates. J Pest Sci 92:747–756

    Google Scholar 

  • Gagnon AÈ, Heimpel GE, Brodeur J (2015) The ubiquity of intraguild predation among predatory arthropods. PLoS ONE 6:e28061

    Google Scholar 

  • Gao XY, Shi J, Qiao ZH, Lv DL, Wu HC (2016) Study on the synergistic predation effects of Harmonia axyridis and Propylea japonica on Aphis gossypii. Agric Technol 36:19–20

    Google Scholar 

  • Gardarin A, Plantegenest M, Bischoff A, Valantin-Morison M (2018) Understanding plant-arthropod interactions in multitrophic communities to improve conservation biological control: useful traits and metrics. J Pest Sci 91:943–955

    Google Scholar 

  • Gontijo LM (2018) Engineering natural enemy shelter to enhance conservation biological control in field crops. Biol Control 130:155–163

    Google Scholar 

  • Gurr GM, Wratten SD, Landis DA, You M (2017) Habitat management to suppress pest populations: progress and prospects. Annu Rev Entomol 62:91–109

    CAS  PubMed  Google Scholar 

  • Hartig F (2019) DHARMa: Residual Diagnostics for Hierarchical (Multi–Level / Mixed) Regression Models. R package version 0.2.4. https://CRAN.R-project.org/package=DHARMa

  • Hatt S, Osawa N (2019) The role of Perilla frutescens flowers on fitness traits of the ladybird beetle Harmonia axyridis. BioControl 64:381–390

    Google Scholar 

  • Hatt S, Xu Q, Francis F, Osawa N (2019) Aromatic plants of East Asia to enhance natural enemies towards biological control of insect pests. Entomol Gen 38:275–315

    Google Scholar 

  • Hironori Y, Katsuhiro S (1997) Cannibalism and interspecific predation in two predatory ladybirds in relation to prey abundance in the field. Entomophaga 42:153–163

    Google Scholar 

  • Hodek I, Michaud JP (2008) Why is Coccinella septempunctata so successful? (A point-of-view). Eur J Entomol 105:1–12

    Google Scholar 

  • Hodek I, van Emden HF, Honěk A (2012) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley

    Google Scholar 

  • Jaworski CC, Xiao D, Xu QX, Ramirez-Romero R, Guo XJ, Wang S, Desneux N (2019) Varying the spatial arrangement of synthetic herbivore-induced plant volatiles and companion plants to improve conservation biological control. J Appl Ecol 56:1176–1188

    CAS  Google Scholar 

  • Jonsson M, Kaartinen R, Straub CS (2017) Relationships between natural enemy diversity and biological control. Curr Opin Insect Sci 20:1–6

    Google Scholar 

  • Koch RL (2003) The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts. J Insect Sci. https://doi.org/10.1093/jis/3.1.32

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch RL, Galvan TL (2008) Bad side of a good beetle: the north American experience with Harmonia axyridis. BioControl 53:23–25

    Google Scholar 

  • Kuroda T, Miura K (2003) Comparison of the effectiveness of two methods for releasing Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) against Aphis gossypii Glover (Homoptera: Aphididae) on cucumbers in a greenhouse. Appl Entomol Zool 38:271–274

    Google Scholar 

  • Lamichhane JR, Barzman M, Booij K, Boonekamp P, Desneux N, Huber L, Kudsk P, Langrell SRH, Ratnadass A, Ricci P, Sarah J-L, Messéan A (2015) Robust cropping systems to tackle pests under climate change. Agron Sustain Dev 35:443–459

    Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat manipulation to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    CAS  Google Scholar 

  • Lanzoni A, Accinelli G, Bazzocchi GG, Burgio G (2004) Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (Col., Coccinellidae). J Appl Entomol 128:298–306

    Google Scholar 

  • Lei ZL, Zong LB, Yang GJ, Xiao C (1988) The influence of temperature on development and predation to larvae of Propylea japonica (Thunberg). Zool Res 9:50

    Google Scholar 

  • Lenth R (2019) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.5. https://CRAN.R-project.org/package=emmeans

  • Li MT (2013) Biological characteristics and control method of Myzus persicae (Sulzer). J Agric Catastrophol 3:1–4

    Google Scholar 

  • Li S, Tan XL, Desneux N, Benelli G, Zhao J, Li XH, Zhang F, Gao XW, Wang S (2015) Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures? Sci Rep 5:12729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Jaworski CC, Hatt S, Zhang F, Desneux N, Wang S (2021a) Flower strips adjacent to greenhouses help reduce pest populations and insecticide applications inside organic commercial greenhouses. J Pest Sci 94:679–689

    Google Scholar 

  • Li H, Li B, Lövei GL, Kring TJ, Obrycki JJ (2021b) Interactions among native and non-native predatory Coccinellidae influence biological control and biodiversity. Ann Entomol Soc Am. https://doi.org/10.1093/aesa/saaa047

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YJ, Yu JX, Zhou G, Dai LX, Yang ZQ, Zhang LN (2012) Evaluation of biological control of Monochamus alternatus by releasing Scleroderma sichuanensis and Dastarus helophoroides. Hunan For Sci Technol 39:20–23

    Google Scholar 

  • Lu YH, Wu KM, Jiang YY, Guo YY, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    CAS  PubMed  Google Scholar 

  • Lu ZX, Zhu PY, Gurr GM, Zheng XS, Read DME, Heong KL, Yang YJ, Xu HX (2014) Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: prospects for enhanced use in agriculture. Insect Sci 21:1–12

    PubMed  Google Scholar 

  • Ma YY, Zhang F, Wang S, Di N (2019) Synergistic effect of functional plant Calendula officinalis (Asterales: Asteraceae) to the colonization of Coccinella septempunctata (Coleoptera: Coccinellidae) in greenhouse. J Environ Entomol 41:276–282

    Google Scholar 

  • Mathews CR, Brown MW, Wäckers FL (2016) Comparison of peach cultivars for provision of extrafloral nectar resources to Harmonia axyridis (Coleoptera: Coccinellidae). Environ Entomol 45:649–658

    CAS  PubMed  Google Scholar 

  • Michaud JP (2010) A comparative study of larval cannibalism in three species of ladybird. Ecol Entomol 28:92–101

    Google Scholar 

  • Mirande L, Desneux N, Haramboure M, Schneider MI (2015) Intraguild predation between an exotic and a native coccinellid in Argentina: the role of prey density. J Pest Sci 88:155–162

    Google Scholar 

  • Mohammadpour M, Hosseini M, Michaud JP, Karimi J, Hosseininaveh V (2020) The life history of Nabis pseudoferus feeding on Tuta absoluta eggs is mediated by egg age and parasitism status. Biol Control 151:104401. https://doi.org/10.1016/j.biocontrol.2020.104401

    Article  CAS  Google Scholar 

  • Ortiz-Martínez S, Staudacher K, Baumgartner V, Traugott M, Lavandero B (2020) Intraguild predation is independent of landscape context and does not affect the temporal dynamics of aphids in cereal fields. J Pest Sci 93:235–249

    Google Scholar 

  • Osawa N (2015) Sex-dependent effects of sibling cannibalism on life history traits of the ladybird beetle Harmonia axyridis. Biol J Lin Soc 76:349–360

    Google Scholar 

  • Ovchinnikov AN, Belyakova NA, Ovchinnikova AA, Reznik SY (2019) Factors determining larval cannibalistic behavior in invasive and native populations of the multicolored Asian ladybird, Harmonia axyridis. Entomol Gen 38:243–254

    Google Scholar 

  • Parolin P, Bresch C, Poncet C, Desneux N (2012) Functional characteristics of secondary plants for increased pest management. Int J Pest Manag 58:369–377

    Google Scholar 

  • Pell JK, Baverstock J, Roy HE, Ware RL, Majerus MEN (2008) Intraguild predation involving Harmonia axyridis: a review of current knowledge and future perspectives. BioControl 53:147–168

    Google Scholar 

  • Pervez A, Gupta AK (2010) Role of surface chemicals in egg cannibalism and intraguild predation by neonates of two aphidophagous ladybirds, Propylea dissecta and Coccinella transversalis. J Appl Entomol 128:691–695

    Google Scholar 

  • Perovic DJ, Gámez-Virués S, Landis DA et al (2018) Managing biological control services through multi-trophic trait interactions: review and guidelines for implementation at local and landscape scales. Biol Rev 93:306–321

    PubMed  Google Scholar 

  • Polis GA, Myers CA (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Google Scholar 

  • Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–154

    CAS  PubMed  Google Scholar 

  • R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.

  • Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and management of the soybean aphid in North America. Ann Rev Entomol 56:375–399

    CAS  Google Scholar 

  • Riahi E, Fathipour Y, Talebi AA, Mehrabadi M (2016) Pollen quality and predator viability: life table of Typhlodromus bagdasarjani on seven different plant pollens and two-spotted spider mite. Syst Appl Acarol 21:1399–1412

    Google Scholar 

  • Rosenheim JA, Wilhoit LR, Armer CA (1993) Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449

    PubMed  Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological-control agents: theory and evidence. Biol Control 5:303–335

    Google Scholar 

  • Sanchez-Hernandez CV, Desneux N, Bao-Fundora L, Ramirez-Romero R (2021) Alternative extraguild prey modifies focal extraguild prey consumption and parasitism but not intraguild predation intensity. Biol Control 153:104475

    CAS  Google Scholar 

  • Sato S, Dixon AFG, Yasuda H (2003) Effect of emigration on cannibalism and intraguild predation in aphidophagous ladybirds. Ecol Entomol 28:628–633

    Google Scholar 

  • Snyder WE, Evans EW (2006) Ecological effects of invasive arthropod generalist predators. Annu Rev Ecol Evol Syst 37:95–122

    Google Scholar 

  • Snyder WE (2019) Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biol Control 135:73–82

    Google Scholar 

  • Song BZ, Zhang J, Wiggins NL, Yao YC, Tan GB, Sang XS (2012) Intercropping with aromatic plants decrease herbivore abundance species richness, and shifts arthropod community trophic structure. Environ Entomol 4:872–879

    Google Scholar 

  • Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237

    Google Scholar 

  • Sun H, Song Y (2019) Establishment of a wheat banker plant system for the parasitoid Aphidius gifuensis against Myzus persicae in greenhouse chili pepper. Appl Entomol Zool 54:1–9

    Google Scholar 

  • Tan XL, Zhao J, Wang S, Zhang F (2015) Optimization and evaluation of microencapsulated artificial diet for mass rearing the predatory ladybird Propylea japonica (Coleoptera: Coccinellidae). Insect Sci 22:111–120

    CAS  PubMed  Google Scholar 

  • Tan XL, Hu NN, Zhang F, Ramirez-Romero R, Desneux N, Wang S, Ge F (2016) Mixed release of two parasitoids and a polyphagous ladybird as a potential strategy to control the tobacco whitefly Bemisia tabaci. Sci Rep 6:28245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomine E, Rusch A, Supplisson C, Monticelli LS, Amiens-Desneux E, Lavoir AV, Desneux N (2020) Highly diversified crop systems can promote the dispersal and foraging activity of the generalist predator Harmonia axyridis. Entomol Gen 40:133–145

    Google Scholar 

  • van Veen FJF, Morris RJ, Godfray HCJ (2006) Apparent competition, quantitative food webs, and structure of phytophagous insect communities. Annu Rev Entomol 51:187–208

    PubMed  Google Scholar 

  • Vuong PT, Kim J, Song Y (2001) The seasonal occurrence of the two aphid species, Myzus persicae and Aphis gossypii, and their natural enemies on vegetable crops in Chinju, Korea. J Asia-Pacific Entomol 4:41–44

    Google Scholar 

  • Wäckers FL, van Rijn PCJ (2012) Pick and mix: selecting flowering plants to meet the requirements of target biological control insects. In: Gurr G, Wratten S, Snyder W, Read D (eds) Biodiversity and insect pests. Wiley

    Google Scholar 

  • Wang S, Tan XL, Xu HX, Zhang F (2012) Interspecific competition among three predacious ladybirds (Coleoptera: Coccinellidae). Scientia Agricultura Sinica 45:3980–3987

    Google Scholar 

  • Wang YS, Yao FL, Soares MA, Basiri SE, Amiens-Desneux E, Campos MR, Lavoir AV, Desneux N (2020) Effects of four non-crop plants on life history traits of the lady beetle Harmonia axyridis. Entomol Gen 40:243–252

    Google Scholar 

  • Ware RL, Majerus MEN (2008) Intraguild predation of immature stages of British and Japanese coccinellids by the invasive ladybird Harmonia axyridis. BioControl 53:169–188

    Google Scholar 

  • Wolf S, Romeis J, Collatz J (2018) Utilization of plant-derived food sources from annual flower strips by the invasive harlequin ladybird Harmonia axyridis. Biol Control 122:118–126

    Google Scholar 

  • Xiu CL, Pan HS, Ali A, Lu YH (2017) Extrafloral nectar of Hibiscus cannabinus promotes adult populations of Harmonia axyridis. Biocontrol Sci Tech 27:1009–1013

    Google Scholar 

  • Xu Q, Wang S, Li S, Hatt S (2020) Conservation Biological Control in Organic Greenhouse Vegetables. In: Gao Y, Hokkanen H, Menzler-Hokkanen I (eds) Integrative Biological Control. Progress in Biological Control, vol 20. Springer, Cham

    Google Scholar 

  • Yang NW, Zang LS, Wang S, Guo JY, Xu HX, Zhang F, Wan FH (2014) Biological pest management by predators and parasitoids in the greenhouse vegetables in China. Biol Control 68:92–102

    Google Scholar 

  • Zhang SZ, Li JJ, Shan HW, Zhang F, Liu TX (2012) Influence of five aphid species on development and reproduction of Propylaea japonica (Coleoptera: Coccinellidae). Biol Control 62:135–139

    Google Scholar 

  • Zhang ZQ, Zhou C, Xu YY, Huang XQ, Zhang LX, Mu W (2016) Effects of intercropping tea with aromatic plants on population dynamics of arthropods in Chinese tea plantations. J Pest Sci 90:227–237

    Google Scholar 

  • Zhao J, Guo XJ, Tan XL, Desneux N, Zappala L, Zhang F, Wang S (2017) Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Manag Sci 73:515–520

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by the project 32072479 supported by the National Natural Science Foundation of China, the National Key Research and Development Program of China (2017YFD0201000; 2017YFD0200400), the Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China (BZ0432) and the Key Research and Development Program of Jiangxi Province (20202BBF62006).

Author information

Authors and Affiliations

Authors

Contributions

SW, CCJ, YL and XG designed the study; CX and JW performed the experiments; CX, HDJ and CCJ analyzed the data; YL, CX, CCJ and SW wrote the manuscript. All authors read and approved the manuscript for submission.

Corresponding authors

Correspondence to Xiaojun Guo or Su Wang.

Ethics declarations

Conflict of interest

Authors declare they have no competing interests. SW is a Subject Editor of Journal of Pest Science and was not involved in the journal’s review of, or decision related to, this manuscript.

Additional information

Communicated by Antonio Biondi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Chen, X., Dai, H. et al. Flower provision reduces intraguild predation between predators and increases aphid biocontrol in tomato. J Pest Sci 95, 461–472 (2022). https://doi.org/10.1007/s10340-021-01396-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-021-01396-x

Keywords

Navigation