Skip to main content
Log in

Fused: a promising molecular target for an RNAi-based strategy to manage Bt resistance in Plutella xylostella (L.)

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Bacillus thuringiensis (Bt), a naturally occurring entomopathogenic soil bacterium, has been the active ingredient of sprayable Bt biopesticides for over a century. Insecticidal Bt Cry proteins are particularly well suited for use as plant-incorporated protectants in transgenic crops (Bt crops) due to their specificity against insect pests and safety for non-target organisms. The sustainability of these Bt products, however, has been challenged by the development of resistance in the field. RNA interference (RNAi), a species-specific control alternative that has been deregulated and commercialized in the USA and Canada, provides a new mode of action to complement the existing Bt products. Based on our preliminary research, we hypothesized that pyramiding/integrating Bt with RNAi can address/manage resistance issues related to Bt traits. To examine this overarching hypothesis, we (1) cloned and characterized a serine/threonine kinase gene (fused) of the Hedgehog (Hh) signaling pathway in the diamondback moth, Plutella xylostella (L.), a global superpest; (2) profiled Pxfused expression in Bt-resistant P. xylostella strains; and (3) investigated the involvement of Pxfused in Bt Cry1Ac resistance in P. xylostella. Pxfused expression was elevated ubiquitously in all Bt-resistant strains, and silencing of Pxfused led to larval and pupal mortality in both Cry1Ac-susceptible and -resistant strains, suggesting that Pxfused is a potential target for RNAi-based resistance management. Taken together, our results not only identify a molecular target to control a devastating lepidopteran pest, but also shed light on a novel resistance management strategy through the integration of two biotechnological techniques with distinct modes of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ascano M Jr, Robbins DJ (2004) An intramolecular association between two domains of the protein kinase Fused is necessary for Hedgehog signaling. Mol Cell Biol 24:10397–11405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ascano M, Nybakken KE, Sosinski J, Stegman MA, Robbins DJ (2002) The carboxyl-terminal domain of the protein kinase fused can function as a dominant inhibitor of Hedgehog signaling. Mol Cell Biol 22:1555–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bürglin TR (2008) The Hedgehog protein family. Genome Biol 9:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Bardwell L, Bardwell AJ, Wu B, Waterman M (2016) Crosstalk between MAP kinase and Hedgehog pathways by direct phosphorylation of Gli transcription factors. FASEB J 30(1112):1111

    Google Scholar 

  • Baum JA et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Baum JA, Roberts JK (2014) Progress towards RNAi-mediated insect pest management. Adv Insect Physiol 47:249–295

    Article  Google Scholar 

  • Bautista MA, Miyata T, Miura K, Tanaka T (2009) RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39:38–46

    Article  CAS  PubMed  Google Scholar 

  • Bellés X (2010) Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu Rev Entomol 55:111–128

    Article  PubMed  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briscoe J, Thérond PP (2013) The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:416–429

    Article  PubMed  Google Scholar 

  • Castagnola A, Jurat-Fuentes JL (2016) Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. Curr Opin Insect Sci 15:104–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen MH, Gao N, Kawakami T, Chuang PT (2005) Mice deficient in the fused homolog do not exhibit phenotypes indicative of perturbed hedgehog signaling during embryonic development. Mol Cell Biol 25:7042–7053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiaens O, Whyard S, Vélez AM, Smagghe G (2020) Double-stranded RNA technology to control insect pests: current status and challenges. Front Plant Sci 11:451

    Article  PubMed  PubMed Central  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361:916–919

    Article  CAS  PubMed  Google Scholar 

  • Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    Article  PubMed  Google Scholar 

  • Fishilevich E et al (2019) RNAi targeting of rootworm Troponin I transcripts confers root protection in maize. Insect Biochem Mol Biol 104:20–29

    Article  CAS  PubMed  Google Scholar 

  • Fishilevich E et al (2016) Use of chromatin remodeling ATPases as RNAi targets for parental control of western corn rootworm (Diabrotica virgifera virgifera) and Neotropical brown stink bug (Euschistus heros). Insect Biochem Mol Biol 71:58–71

  • Fletcher SJ, Reeves PT, Hoang BT, Mitter N (2020) A perspective on RNAi-based biopesticides. Front Plant Sci 11:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Furlong MJ, Wright DJ, Dosdall LM (2013) Diamondback moth ecology and management: problems, progress and prospects. Annu Rev Entomol 58:517–541

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Yang X, Zhang B, Zhong G, Hu MY (2011) Silencing of Rieske iron–sulfur protein using chemically synthesised siRNA as a potential biopesticide against Plutella xylostella. Pest Manag Sci 67:514–520

    Article  CAS  PubMed  Google Scholar 

  • Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:43–62

    Article  CAS  PubMed  Google Scholar 

  • Guo Z et al (2015a) MAPK signaling pathway alters expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth. PLoS Genet 11:e1005124

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Z et al (2020) MAPK-dependent hormonal signaling plasticity contributes to overcoming Bacillus thuringiensis toxin action in an insect host. Nat Commun 11:3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Kang S, Zhu X, Wu Q, Wang S, Xie W, Zhang Y (2015b) The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.). J Invertebr Pathol 126:21–30

    Article  CAS  PubMed  Google Scholar 

  • Guo Z et al (2015c) Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). Insect Biochem Mol Biol 59:30–40

    Article  CAS  PubMed  Google Scholar 

  • Guo Z et al (2015d) The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management. Sci Rep 5:13728

    Article  PubMed  PubMed Central  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  CAS  PubMed  Google Scholar 

  • Ingham PW (1998) Transducing Hedgehog: the story so far. EMBO J 17:3505–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingham PW, Nakano Y, Seger C (2011) Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 12:393–406

    Article  CAS  PubMed  Google Scholar 

  • Israni B, Rajam MV (2017) Silencing of ecdysone receptor, insect intestinal mucin and sericotropin genes by bacterially produced double-stranded RNA affects larval growth and development in Plutella xylostella and Helicoverpa armigera. Insect Mol Biol 26:164–180

    Article  CAS  PubMed  Google Scholar 

  • Joga MR, Zotti MJ, Smagghe G, Christiaens O (2016) RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front Physiol 7:553

    Article  PubMed  PubMed Central  Google Scholar 

  • Keys DN et al (1999) Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 283:532–534

    Article  CAS  PubMed  Google Scholar 

  • Khajuria C et al (2018) Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS ONE 13:e0197059

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim E, Park Y, Kim Y (2015) A transformed bacterium expressing double-stranded RNA specific to integrin β1 enhances Bt toxin efficacy against a polyphagous insect pest, Spodoptera exigua. PLoS ONE 10:e0132631

    Article  PubMed  PubMed Central  Google Scholar 

  • Kupferschmidt K (2013) A lethal dose of RNA. Science 341:732–733

    Article  CAS  PubMed  Google Scholar 

  • Lee RTH, Zhao Z, Ingham PW (2016) Hedgehog signalling. Development 143:367–372

    Article  CAS  PubMed  Google Scholar 

  • Lei Y et al (2014) Midgut transcriptome response to a Cry toxin in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Gene 533:180–187

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wang X, Zhao Y, Li Y, Liu Y, Sun J (2015) Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera. Int J Biol Sci 11:67–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu S et al (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48:D265–D268

    Article  CAS  PubMed  Google Scholar 

  • Lum L et al (2003) Hedgehog signal transduction via Smoothened association with a cytoplasmic complex scaffolded by the atypical kinesin, Costal-2. Mol Cell 12:1261–1274

  • Maloverjan A, Piirsoo M (2012) Mammalian homologues of Drosophila fused kinase. In: Litwack G (ed) Vitamins & hormones, vol 88. Academic Press, Cambridge, pp 91–113

    Google Scholar 

  • Maloverjan A, Piirsoo M, Michelson P, Kogerman P, Østerlund T (2010) Identification of a novel serine/threonine kinase ULK3 as a positive regulator of Hedgehog pathway. Exp Cell Res 316:627–637

    Article  CAS  PubMed  Google Scholar 

  • Mezzetti B et al (2020) RNAi: What is its position in agriculture? J Pest Sci 93:1125–1130

    Article  Google Scholar 

  • Ni M et al (2017) Next generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol J 15:1204–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu J, Taning CNT, Christiaens O, Smagghe G, Wang JJ (2018) Rethink RNAi in insect pest control: challenges and perspectives. Adv Insect Physiol 55:1–17

    Article  Google Scholar 

  • Oh SA, Bourdon V, Dickinson HG, Twell D, Park SK (2014) Arabidopsis Fused kinase TWO-IN-ONE dominantly inhibits male meiotic cytokinesis. Plant Reprod 27:7–17

    Article  CAS  PubMed  Google Scholar 

  • Oh SA, Johnson A, Smertenko A, Rahman D, Park SK, Hussey PJ, Twell D (2005) A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Curr Biol 15:2107–2111

    Article  CAS  PubMed  Google Scholar 

  • Petrov K, Wierbowski BM, Salic A (2017) Sending and receiving Hedgehog signals. Annu Rev Cell Dev Biol 33:145–168

    Article  CAS  PubMed  Google Scholar 

  • Préat T et al (1990) A putative serine/threonine protein kinase encoded by the segment-polarity fused gene of Drosophila. Nature 347:87–89

    Article  PubMed  Google Scholar 

  • Robbins DJ, Fei DL, Riobo NA (2012) The Hedgehog signal transduction network. Sci Signal 5:re6

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruel L, Gallet A, Raisin S, Truchi A, Staccini-Lavenant L, Cervantes A, Therond PP (2007) Phosphorylation of the atypical kinesin Costal2 by the kinase Fused induces the partial disassembly of the Smoothened-Fused-Costal2-Cubitus interruptus complex in Hedgehog signalling. Development 134:3677–3689

    Article  CAS  PubMed  Google Scholar 

  • Ryan KE, Chiang C (2012) Hedgehog secretion and signal transduction in vertebrates. J Biol Chem 287:17905–17913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • San Miguel K, Scott JG (2016) The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag Sci 72:801–809

    Article  CAS  PubMed  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926–935

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Cushing NL, Finson N, Johnson MW (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 83:1671–1676

    Article  Google Scholar 

  • Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V (2008) The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454:651–655

    Article  CAS  PubMed  Google Scholar 

  • Tang L et al (2008) tsunami, the Dictyostelium homolog of the Fused kinase, is required for polarization and chemotaxis. Genes Dev 22:2278–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thérond P et al (1996) Functional domains of fused, a serine-threonine kinase required for signaling in Drosophila. Genetics 142:1181–1198

    Article  PubMed  PubMed Central  Google Scholar 

  • Villarreal CM, Darakananda K, Wang VR, Jayaprakash PM, Suzuki Y (2015) Hedgehog signaling regulates imaginal cell differentiation in a basally branching holometabolous insect. Dev Biol 404:125–135

    Article  CAS  PubMed  Google Scholar 

  • Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck JV (2019) RNA interference in insects: protecting beneficials and controlling pests. Front Physiol 9:1912

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson CW, Chuang PT (2010) Mechanism and evolution of cytosolic Hedgehog signal transduction. Development 137:2079–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson CW et al (2009) Fused has evolved divergent roles in vertebrate Hedgehog signalling and motile ciliogenesis. Nature 459:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F, Zhang Y, Sun B, McMahon AP, Wang Y (2017) Hedgehog signaling: from basic biology to cancer therapy. Cell Chem Biol 24:252–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W et al (2012) Tissue-specific transcriptome profiling of Plutella xylostella third instar larval midgut. Int J Biol Sci 8:1142–1155

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan S et al (2020) Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. J Pest Sci 93:449–459

    Article  Google Scholar 

  • Zhang X, Feng L, Qiao N, Liu Y, Zhang DC, Yin H (2019) Cloning, expression pattern and functional characterization of fused, an important kinase of the Hedgehog signalling pathway from Locusta migratoria (Orthoptera: Acridoidea). Biotechnol Biotec Eq 33:1024–1033

    Article  CAS  Google Scholar 

  • Zhu TT, Meng QW, Guo WC, Li GQ (2015a) RNA interference suppression of the receptor tyrosine kinase Torso gene impaired pupation and adult emergence in Leptinotarsa decemlineata. J Insect Physiol 83:53–64

    Article  CAS  PubMed  Google Scholar 

  • Zhu X et al (2015b) Construction and characterisation of near-isogenic Plutella xylostella (Lepidoptera: Plutellidae) strains resistant to Cry1Ac toxin. Pest Manag Sci 71:225–233

    Article  CAS  PubMed  Google Scholar 

  • Zotti M, Dos Santos EA, Cagliari D, Christiaens O, Taning CNT, Smagghe G (2018) RNAi technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag Sci 74:1239–1250

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (2017YFD0200900), the National Natural Science Foundation of China (31630059; 31701813; 32022074), the Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetables and the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaojiang Guo or Youjun Zhang.

Ethics declarations

Conflict of interest

The authors have no competing interests in this work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Subba Reddy Palli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Sun, D., Qin, J. et al. Fused: a promising molecular target for an RNAi-based strategy to manage Bt resistance in Plutella xylostella (L.). J Pest Sci 95, 101–114 (2022). https://doi.org/10.1007/s10340-021-01374-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-021-01374-3

Keyword

Navigation