Skip to main content
Log in

Compatibility of foliage-dwelling predatory mites and mycoinsecticides, and their combined efficacy against western flower thrips Frankliniella occidentalis

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Foliage-dwelling predatory mites and foliar applications of mycoinsecticides are commonly used in biological control programs for Western flower thrips. A laboratory study was designed to examine the compatibility of two foliage-dwelling predatory mites with two commercially available mycoinsecticides, followed by a greenhouse study to assess their combined efficacy against Western flower thrips, with a view to their concurrent use in an integrated strategy. The following commercially available biocontrol agents were evaluated: the predatory mites, Neoseiulus cucumeris (Oudemans) and Amblyseius swirskii (Athias-Henriot); and entomopathogenic fungi, Metarhizium anisopliae (Metschnikoff) Sorokin (now classified as Metarhizium brunneum) strain F52 and Beauveria bassiana (Balsamo) GHA strain. Mortality caused by the mycoinsecticides ranged from 0 to 15.98% in the laboratory studies. In the greenhouse, the relative efficacy of predatory mite slow-release breeding sachets, Met52 EC spray, and a combined application was determined. Under high pest pressure, Met52 EC-alone was not as effective as N. cucumeris-alone or the combination treatment over 8 weeks. Neoseiulus cucumeris-alone provided better control of thrips than Met52 EC, but in a mixed infestation of thrips and two-spotted spider mites, the combination treatment worked best overall; the spider mites were effectively suppressed by Met52 EC. Under low pest pressure in the experiment with A. swirskii, use of Met52 EC or A. swirskii sachets effectively suppressed thrips population growth; moreover, the combination treatment completely eliminated both thrips and spider mites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Ansari MA, Shah FA, Whittaker M, Prasaad M, Butt TM (2007) Control of western flower thrips (Frankliniella occidentalis) pupae with Metarhizium anisopliae in peat and peat alternative growing media. Biol Control 40:293–297

    Article  Google Scholar 

  • Ansari MA, Brownbridge M, Shah FA, Butt TM (2008) Efficacy of entomopathogenic fungi against soil-dwelling stages of western flower thrips, Frankliniella occidentalis, in plant-growing media. Entomol Exp Appl 27:80–87

    Article  Google Scholar 

  • Arthurs S, Heinz KM (2006) Evaluation of the nematodes Steinernema feltiae and Thripinema nicklewoodi as biological control agents of western flower thrips Frankliniella occidentalis infesting chrysanthemum. Biocontrol Sci Technol 16:141–155

    Article  Google Scholar 

  • Berndt O, Meyhӧfer R, Poehling H-M (2004a) The edaphic phase in the ontogenesis of Frankliniella occidentals and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages. Biol Control 30:17–24

    Article  Google Scholar 

  • Berndt O, Poehling H-M, Meyhӧfer R (2004b) Predation capacity of two predatory laelapid mites on soil-dwelling thrips stages. Entomol Exp Appl 112:107–115

    Article  Google Scholar 

  • Boller EF, Vogt H, Malavolta C (2005) Working document on selectivity of pesticides. IOBC-WPRS, IOBC database on selectivity of pesticides. http://www.iobc-wprs.org/ip_ipm/03021_IOBC_WorkingDocumentPesticides_Explanations.pdf

  • Broadbent AB, Pree DJ (1997) Resistance to insecticides in populations of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) from greenhouses in the Niagara region of Ontario. Can Entomol 129:907–913

    Article  Google Scholar 

  • Broadbent AB, Rhainds M, Shipp L, Murphy G, Wainman L (2003) Pupation behaviour of western flower thrips (Thysanoptera: Thripidae) on potted chrysanthemum. Can Entomol 135:741–744

    Article  Google Scholar 

  • Brownbridge M (1995) Prospects for mycopathogens in thrips management. In: Parker BL, Skinner M, Lewis T (eds) Thrips biology and management. Plenum Press, New York, pp 281–295

    Chapter  Google Scholar 

  • Brownbridge M (2006) Entomopathogenic fungi: status and considerations for their development and use in integrated pest management. Recent Res Dev Entomol 5:27–58

    Google Scholar 

  • Brownbridge M, Saito T, Buitenhuis R, Brommit A, Murphy G (2011) Developing a biologically-based IPM program for western flower thrips, Frankliniella occidentalis, in greenhouse floriculture. IOBC-WPRS Bull 68:21–24

    Google Scholar 

  • Brownbridge M, Buitenhuis R, Murphy G, Waite M, Scott-Dupree C (2013) Banker plants, trap crops and other bioprotection developments in Canadian greenhouse floriculture. In: Mason PG, Gillespie DR, Vincent C (eds) Proceedings of 4th international symposium on biological control of arthropods, Pucón, Chile, 4–8 March 2013, pp 133–136

  • Brownbridge M, Saito T, Côté P (2014) Considerations and combinations to improve control of pupating western flower thrips in chrysanthemums. IOBC-WPRS Bull 102:29–35

    Google Scholar 

  • Bugeme DM, Knapp M, Ekesi S, Chabi-Olaye A, Boga HI, Maniania NK (2015) Efficacy of Metarhizium anisopliae in controlling the two-spotted spider mite Tetranychus urticae in common bean in screenhouse and field experiments. Insect Sci 22:121–128

    Article  PubMed  Google Scholar 

  • Buitenhuis R, Shipp JL (2005) Efficacy of entomopathogenic nematode Steinernema feltiae (Rhabditida: Steinernematidae) as influenced by Frankliniella occidentalis (Thysanoptera: Thripidae) developmental stage and host plant stage. J Econ Entomol 98:1480–1485

    Article  PubMed  CAS  Google Scholar 

  • Buitenhuis R, Shipp JL (2008) Influence of plant species and plant growth stage on Frankliniella occidentalis pupation behaviour in greenhouse ornamentals. J Appl Entomol 132:86–88

    Article  Google Scholar 

  • Buitenhuis R, Glemser E, Brommit A (2014) Practical placement improves the performance of slow release sachets of Neoseiulus cucumeris. Biocontrol Sci Technol 24:1153–1166

    Article  Google Scholar 

  • Buitenhuis R, Murphy G, Shipp L, Scott-Dupree C (2015) Amblyseius swirskii in greenhouse production systems: a floricultural perspective. Exp Appl Acarol 65:451–464

    Article  PubMed  Google Scholar 

  • Calvo FJ, Knapp M, van Houten YM, Hoogerbrugge H, Belda JE (2015) Amblyseius swirskii: what made this predatory mite such a successful biocontrol agent? Exp Appl Acarol 65:419–433

    Article  PubMed  CAS  Google Scholar 

  • Carney VA, Diamond JC, Murphy GD, Marshall D (2002) The potential of Atheta coriaria Kraatz (Coleoptera:Staphylinidae), as a biological control agent for use in greenhouse crops. IOBC-WPRS Bull 25:37–40

    Google Scholar 

  • Chandler D, Davidson G, Pell JK, Ball V, Shaw K, Sunderland KD (2000) Fungal biocontrol of Acari. Biocontrol Sci Technol 10:357–384

    Article  Google Scholar 

  • Chandler D, Sunderland KD, Ball BV, Davidson G (2001) Prospective biological control agents of Varroa destructor n. sp., an important pest of the European honeybee, Apis mellifera. Biocontrol Sci Technol 11:429–448

    Article  Google Scholar 

  • Ebssa L, Borgemeister B, Poehling H-M (2001) Efficacy of entomopathogenic nematodes against soil-dwelling life stages of Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). J Invertebr Pathol 78:119–127

    Article  PubMed  CAS  Google Scholar 

  • Ebssa L, Borgemeister C, Poehling H-M (2004) Effectiveness of different species/strains of entomopathogenic nematodes for control of western flower thrips (Frankliniella occidentalis) at various concentrations, host densities, and temperatures. Biol Control 29:145–154

    Article  Google Scholar 

  • Ebssa L, Borgemeister C, Poehling H-M (2006) Simultaneous application of entomopathogenic nematodes and predatory mites to control western flower thrips Frankliniella occidentalis. Biol Control 39:66–74

    Article  Google Scholar 

  • Echegaray ER, Cloyd RA (2013) Life history characteristics of the rove beetle, Dalotia coriaria (Coleoptera: Staphylinidae) under laboratory conditions. J Kansas Entomol Soc 86:145–154

    Article  Google Scholar 

  • Gao YL, Lei ZR, Reitz SR (2012) Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Manag Sci 68:1111–1124

    Article  PubMed  CAS  Google Scholar 

  • Goettel MS, Inglis GD (1997) Fungi: hyphomycetes. In: Lacey L (ed) Manual of techniques in insect pathology. Academic Press, San Diego, pp 211–249

    Google Scholar 

  • Holmes ND, Bennison JA, Maulden KA, Kirk WDJ (2012) The pupation behaviour of the western flower thrips, Frankliniella occidentalis (Pergande). Acta Phytopathol Entomol Hung 47:87–96

    Article  Google Scholar 

  • Jacobson RJ, Chandler D, Fenlon J, Russell KM (2001) Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on cucumber plants. Biocontrol Sci Technol 11:391–400

    Article  Google Scholar 

  • Jensen SE (2000) Insecticide resistance in the western flower thrips, Frankliniella occidentalis. Integr Pest Manag Rev 5:131–146

    Article  Google Scholar 

  • Kanga LHB, Jones WA, James RR (2003) Field trials using the fungal pathogen, Metarhizium anisopliae (Deuteromycetes: Hyphomycetes) to control the ectoparasitic mite, Varroa destructor (Acari: Varroidae) in honey bee, Apis mellifera (Hymenoptera: Apidae) colonies. J Econ Entomol 96:1091–1099

    Article  PubMed  Google Scholar 

  • Kirk WDJ, Terry LI (2003) The spread of the western flower thrips Frankliniella occidentalis Pergande. Agric For Entomol 5:301–310

    Article  Google Scholar 

  • Li G, Zhang Z-Q (2016) Some factors affecting the development, survival and prey consumption of Neoseiulus cucumeris (Acari: Phytoseiidae) feeding on Tetranychus urticae eggs (Acari: Tetranychidae). Biotaxa. https://doi.org/10.11158/saa.21.5.1

    Article  Google Scholar 

  • Midthassel A, Leather SR, Wright DJ, Baxter IH (2016) Compatibility of Amblyseius swirskii with Beauveria bassiana: two potentially complimentary biocontrol agents. Biocontrol 61:437–447

    Article  Google Scholar 

  • Murphy G, Gates C, Watson GR (2011) An update on the use of biological control in greenhouse ornamental crops in Canada. IOBC-WPRS Bull 68:125–128

    Google Scholar 

  • Numa Vergel SJ, Bustos RA, Rodriguez CD, Cantor RF (2011) Laboratory and greenhouse evaluation of the entomopathogenic fungi and garlic-pepper extract on the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus and their effect on the spider mite Tetranychus urticae. Biol Control 57:143–149

    Article  Google Scholar 

  • Premachandra DWTS, Borgemeister C, Berndt O, Ehlers R-U, Poehling H-M (2003a) Combined releases of entomopathogenic nematodes and the predatory mite Hypoasis aculeifer to control soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biocontrol 48:529–541

    Article  Google Scholar 

  • Premachandra DWTS, Borgemeister C, Berndt O, Ehlers R-U, Poehling H-M (2003b) Laboratory bioassays of virulence of entomopathogenic nematodes against soil-inhabiting stages of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Nematology 5:539–547

    Article  Google Scholar 

  • Saito T, Brownbridge M (2016) Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soil-dwelling stages of western flower thrips, Frankliniella occidentalis. Biol Control 92:92–100

    Article  Google Scholar 

  • Seiedy M, Tork M, Deyhim F (2015) Effect of the entomopathogenic fungus Beauveria bassiana on the predatory mite Amblyseius swirskii (Acari: Phytoseiidae) as a non-target organism. Syst Appl Acarol 20:241–250

    Article  Google Scholar 

  • Shipp L, Kapongo JP, Park H-H, Kevan P (2012) Effect of bee-vectored Beauveria bassiana on greenhouse beneficials under greenhouse cage conditions. Biol Control 63:135–142

    Article  Google Scholar 

  • Skinner M, Gouli S, Frank CE, Parker BL, Kim JS (2012) Management of Frankliniella occidentalis (Thysanoptera: Thripidae) with granular formulations of entomopathogenic fungi. Biol Control 63:246–252

    Article  Google Scholar 

  • Steiner MY, Spohr LJ, Goodwin S (2011) Relative humidity controls pupation success and dropping behaviour of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Aust J Entomol 50:179–186

    Article  Google Scholar 

  • Thalavaisundaram S, Herron GA, Clift AD, Rose H (2008) Pyrethroid resistance in Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and implications for its management in Australia. Aust J Entomol 47:64–69

    Article  Google Scholar 

  • Waite MO, Scott-Dupree CD, Brownbridge M, Buitenhuis R, Murphy G (2014) Evaluation of seven plant species/cultivars for their suitability as banker plants for Orius insidiosus (Say). Biocontrol 59:79–87

    Article  CAS  Google Scholar 

  • Wang J, Lei ZR, Xu HF, Gao YL, Wang HH (2011) Virulence of Beauveria bassiana isolates against the first instar nymphs of Frankliniella occidentalis and effects on natural enemy Amblyseius barkeri. Chin J Biol Control 27:479–484

    Google Scholar 

  • Wekesa VW, Maniania NK, Knapp M, Boga HJ (2005) Pathogenicity of Beauveria bassiana and Metarhizium anisopliae to the tobacco spider mite Tetranychus evansi. Exp Appl Acarol 36:41–50

    Article  PubMed  Google Scholar 

  • Wu S, Gao Y, Zhang Y, Wang E, Xu X, Lei Z (2014) An entomopathogenic strain of Beauveria bassiana against Frankliniella occidentalis with no detrimental effect on the predatory mite Neoseiulus barkeri: evidence from laboratory bioassay and scanning electron microscopic observation. PLoS ONE 9:e84732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu S, Gao Y, Xu X, Goettel MS, Lei Z (2015a) Compatibility of Beauveria bassiana with Neoseiulus barkeri for control of Frankliniella occidentalis. J Integr Agric 98:98–105

    Article  Google Scholar 

  • Wu S, Gao Y, Xu X, Wang D, Li J, Wang H, Wang E, Lei Z (2015b) Feeding on Beauveria bassiana-treated Frankliniella occidentalis causes negative effects on the predatory mite Neoseiulus barkeri. Nat Sci Rep 5:12033. https://doi.org/10.1038/srep12033

    Article  Google Scholar 

  • Wu S, Gao Y, Smagghe G, Xu X, Lei Z (2016a) Interactions between the entomopathogenic fungus Beauveria bassiana and the predatory mite Neoseiulus barkeri and biological control of their shared prey/host Frankliniella occidentalis. Biol Control 98:43–51

    Article  Google Scholar 

  • Wu S, Xie H, Li M, Xu X, Lei Z (2016b) Highly virulent Beauveria bassiana strains against the two-spotted spider mite, Tetranychus urticae, show no pathogenicity against five phytoseiid mite species. Exp Appl Acarol 70:421–435

    Article  PubMed  Google Scholar 

  • Wu S, Zhang Z, Gao Y, Xu X, Lei Z (2016c) Interactions between foliage- and soil-dwelling predatory mites and consequences for biological control of Frankliniella occidentalis. Biocontrol 61:717–727

    Article  Google Scholar 

  • Wu S, He Z, Wang E, Xu X, Lei Z (2017) Application of Beauveria bassiana and Neoseiulus barkeri for improved control of Frankliniella occidentalis in greenhouse cucumber. Crop Prot 96:83–87

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Growing Forward, a Canadian federal–provincial–territorial agreement aimed at supporting a profitable and innovative agriculture sector; Flowers Canada (Ontario) Inc. Collaborative Research Agreement ‘To develop procedures, knowledge and products that will make biocontrol programs successful for Canadian greenhouse floriculture growers’; OMAFRA-U of G Research Contract 200246 ‘Optimizing Biological Control Strategies in Greenhouse Floriculture: Interactions, Integration and Implementation’; and Agriculture and Agri-Food Canada’s Agriinnovation Program: Industry-led Research and Development Stream for Project AIP-P216 ‘Improved Biocontrol Strategies for Canadian Greenhouse Horticulture.’ Bioworks Inc., Victor, NY and Novozymes BioAg, Salem, VA provided additional funding to support Activities 2 and 5 in AAFC Project AIP-P216. The authors gratefully acknowledge the support and contributions of Bioworks Inc. and Novozymes BioAg. The authors would also like to thank Litza Coello for assisting in the experiment setups, data collection, and data entry.

Author information

Authors and Affiliations

Authors

Contributions

M.B. conceived the study. T.S. designed and conducted experiments, and analyzed data. T.S. conceived the manuscript structure. Both authors wrote, read and approved the manuscript.

Corresponding author

Correspondence to Michael Brownbridge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. T. Jaronski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, T., Brownbridge, M. Compatibility of foliage-dwelling predatory mites and mycoinsecticides, and their combined efficacy against western flower thrips Frankliniella occidentalis. J Pest Sci 91, 1291–1300 (2018). https://doi.org/10.1007/s10340-018-0991-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-018-0991-z

Keywords

Navigation