Skip to main content
Log in

Interactions between foliage- and soil-dwelling predatory mites and consequences for biological control of Frankliniella occidentalis

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The predatory mites Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae) and Stratiolaelaps scimitus Womersley (Acari: Laelapidae) are indigenous species used for control of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) in China. The present study investigated the interactions between these two predators and evaluated the effects of their combined releases to control F. occidentalis in cucumber and eggplant greenhouses during a two-year period. Releases of N. barkeri and S. scimitus were made on the surface of leaves and on soil adjacent to plant roots at a density of 100 per plant, respectively. Although releases of either N. barkeri or S. scimitus alone significantly reduced both adult and larval F. occidentalis densities, combined releases of N. barkeri and S. scimitus greatly improved F. occidentalis control. However, some negative interactions between the two predators did occur. The mean levels of adult and larval F. occidentalis suppression on cucumber plants were 62 and 51 %, and the mean levels of adult and larval F. occidentalis suppression on eggplant plants were 66 and 66 %. Results also revealed that N. barkeri and S. scimitus successfully established populations in the target microhabitats. Moreover, predators established populations more easily on cucumber compared to eggplant crops. These results highlight the potential use of N. barkeri in combination with S. scimitus for control of F. occidentalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Lett 7:557–564

    Article  Google Scholar 

  • Berndt O (2002) Entomopathogenic nematodes and soil-dwelling predatory mites: Suitable antagonists for enhanced biological of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripididae)? PhD Thesis, University of Hannover, Hanover

  • Berndt O, Meyhofer R, Poehling HM (2004) The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil-dwelling thrips stages. Biol Control 30:17–24

    Article  Google Scholar 

  • Buitenhuis R, Shipp L, Scott-Dupree C (2010) Intra-guild vs extra-guild prey: effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: phytoseiidae). Bull Entomol Res 100:167–173

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Janssen A, Sabelis MW (2006) Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Exp Appl Acarol 38:33–46

    Article  PubMed  Google Scholar 

  • Cakmak I, Janssen A, Sabelis MW, Baspinar H (2009) Biological control of an acarine pest by single and multiple natural enemies. Biol Control 50:60–65

    Article  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2011) Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. BioControl 56:185–192

    Article  Google Scholar 

  • Chow A, Chau A, Heinz KM (2008) Compatibility of Orius insidiosus (Hemiptera: Anthocoridae) with Amblyseius (Iphiseius) degenerans (Acari: Phytoseiidae) for control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse roses. Biol Control 44:259–270

    Article  Google Scholar 

  • Fitzgerald JD, Pepper N, Solomon MG (2007) Predator interactions in apple; impact on biocontrol of Panonychus ulmi by Typhlodromus pyri. Biocontrol Sci Technol 17:1009–1019

    Article  Google Scholar 

  • Gao YL, Lei ZR, Reitz SR (2012) Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Manage Sci 8:1111–1121

    Article  CAS  Google Scholar 

  • Guzmán C, Sahún RM, Montserrat M (2016) Intraguild predation between phytoseiid mite species might not be so common. Exp Appl Acarol 68:441–453

    Article  PubMed  Google Scholar 

  • Hatherly IS, Bale JS, Walters KF (2005) Intraguild predation and feeding preferences in three species of phytoseiid mite used for biological control. Exp Appl Acarol 37:43–55

    Article  PubMed  Google Scholar 

  • Karg W (1993) Acari (Acarina), milben, parasitiformes (anactinochaeta), cohors gamasina leach, raubmilben, 2nd edn. Gustav Fischer, Jena

    Google Scholar 

  • Koehler HH (1999) Predatory mites (Gamasina, Mesostigmata). Agric Ecosys Environ 74:395–410

    Article  Google Scholar 

  • Liang XH, Lei ZR, Wen JZ, Zhu ML (2010) The diurnal flight activity and influential factors of Frankliniella occidentalis in the greenhouse. Insect Sci 17:535–541

    Article  Google Scholar 

  • Littell RC, Pendergast J, Natarajan R (2000) Tutorial in biostatistics: modelling covariance structure in the analysis of repeated measures data. Stat Med 19:1793–1819

    Article  CAS  PubMed  Google Scholar 

  • Ma KZ, Hao SG, Zhao HY, Kang L (2003) Intraguild predation in the insect communities. Chin Bull Entomol 41:191–197

    Google Scholar 

  • Merchant VA, Crossley JDA (1970) An inexpensive high-efficiency Tullgren extractor for soil microarthropods. J Ga Entomol Soc 5:83–87

    Google Scholar 

  • Onzo A, Hanna R, Sabelis MW (2003) Interactions in acarine predator guild: impact on Typhlodromalus aripo abundance and biological control of cassava green mite in Africa. Exp Appl Acarol 31:225–241

    Article  PubMed  Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Article  Google Scholar 

  • Premachandra WTSD, Borgemeister C, Berndt O, Ehlers RU, Poehling HM (2003) Combined releases of entomopathogenic nematodes and the predatory mite Hypoaspis aculeifer to control soil-dwelling stages of western flower thrips Frankliniella occidentalis. BioControl 48:529–541

    Article  Google Scholar 

  • Rahman T, Broughton S, Spafford H (2011a) Effect of spinosad and predatory mites on control of Frankliniella occidentalis in three strawberry cultivars. Entomol Exp Appl 138:154–161

    Article  Google Scholar 

  • Rahman T, Spafford H, Broughton S (2011b) Single versus multiple releases of predatory mites combined with spinosad for the management of western flower thrips in strawberry. Crop Prot 30:468–475

    Article  Google Scholar 

  • Rahman T, Spafford H, Broughton S (2012) Use of spinosad and predatory mites for the management of Frankliniella occidentalis in low tunnel–grown strawberry. Entomol Exp Appl 142:258–270

    Article  Google Scholar 

  • Reitz SR, Gao YL, Lei ZR (2011) Thrips: pests of concern to China and the United States. Agric Sci Chi 10:867–892

    Article  Google Scholar 

  • Rosenheim JA (2001) Source-sink dynamics for a generalist insect predator in habitats with strong higher-order predation. Ecol Monogr 71:93–116

    Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents: theory and evidence. Biol Control 5:303–335

    Article  Google Scholar 

  • SAS Institute (2009) Base SAS® 9.2 Procedures Guide. SAS Institute, Cary, NC

  • Schausberger P, Walzer A (2001) Combined versus single species release of predaceous mites: predator–predator interactions and pest suppression. Biol Control 20:269–278

    Article  Google Scholar 

  • Sohrabi F, Enkegaard A, Shishehbor P, Saber M, Mosaddegh MS (2013) Intraguild predation by the generalist predator Orius majusculus on the parasitoid Encarsia formosa. BioControl 58:65–72

    Article  Google Scholar 

  • Spiller DA (1986) Interspecific competition between spiders and its relevance to biological control by general predators. Environ Entomol 15:177–181

    Article  Google Scholar 

  • Strong WB, Croft BA (1995) Inoculative release of phytoseiid mites (Acarina: Phytoseiidae) into the rapidly expanding canopy of hops for control of Tetranychus urticae (Acarina: Tetranychidae). Environ Entomol 24:446–453

    Article  Google Scholar 

  • Tommasini MG, Maini S (1995) Frankliniella occidentalis and other thrips harmful to vegetables and ornamental crops in Europe. Wageningen Agricultural University Papers, 95, 1–42

  • van der Hoeven WAD, van Rijn PCJ (1990) Factors affecting the attack success of predatory mites on thrips larvae. Proc Exp Appl Entomol 1:25–30

    Google Scholar 

  • Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW (2007) The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88:2689–2696

    Article  PubMed  Google Scholar 

  • Walter DE, Campbell NJH (2003) Exotic vs endemic biocontrol agents: would the real Stratiolaelaps miles (Berlese) (Acari: Mesostigmata: Laelapidae) please stand up? Biol Control 26:253–269

    Article  Google Scholar 

  • Walzer A, Moder K, Schausberger P (2009) Spatiotemporal within-plant distribution of the spider mite Tetranychus urticae and associated specialist and generalist predators. B Entomol Res 99:457–466

    Article  CAS  Google Scholar 

  • Wang ED, Xu XN, Wu SY (2010) Control effects of Amblyseius barkeri on Frankliniella occidentalis on the eggplants and their natural enemy Orius sauteri in the greenhouse. Chin Plant Prot 36:101–104

    Google Scholar 

  • Wiethoff J, Poehling HM, Meyhoefer R (2004) Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips. Exp Appl Acarol 34:239–261

    Article  PubMed  Google Scholar 

  • Wu SY, Gao YL, Xu XN, Wang ED, Wang YJ, Lei ZR (2014) Evaluation of Stratiolaelaos scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers. Biocontrol Sci Technol 24:1110–1121

    Article  Google Scholar 

  • Xu XN, Lv JL, Wang ED (2015) Predatory mite research in mass rearing and field applications. Chin J Biol Control 31:647–656

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Mark Goettel for helping with the revision of the manuscript. This research was supported by China Agriculture Research System, CARS-25.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengyong Wu or Zhongren Lei.

Additional information

Handling Editor: Marta Montserrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Zhang, Z., Gao, Y. et al. Interactions between foliage- and soil-dwelling predatory mites and consequences for biological control of Frankliniella occidentalis . BioControl 61, 717–727 (2016). https://doi.org/10.1007/s10526-016-9762-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-016-9762-z

Keywords

Navigation