Waxy bloom on grape berry surface is one important factor for oviposition of European grapevine moths

Abstract

Grapevine moths are severe pest insects in European viticulture. Oviposition by grapevine moths is largely influenced by several physical and chemical cues located on the surface of their host plant’s fruits. The contribution of waxy bloom layer on the berry surface for oviposition decision of two European grapevine moth species, Eupoecilia ambiguella and Lobesia botrana, was investigated. An experimental setup was developed to prove oviposition preferences of both species for certain grape varieties and developmental stages based on epicuticular wax extracts. Chemical analysis of epicuticular wax patterns of four different Vitis vinifera varieties revealed differences. However, oleanolic acid was the main component on berry surface waxes and its relative amount decreased between early and late phenological stages. Furthermore, oleanolic acid was responsible for the preference of earlier phenological stages for E. ambiguella oviposition. However, ovipositional variety preferences were triggered by minor components on the wax berry layer. While the oviposition decision of L. botrana was mainly triggered by oleanolic acid, additional cues like olfactory and haptic ones were also important. The ovipositional preferences were discussed in accordance with the results of the chemical analysis in order to elucidate the role of wax compounds for oviposition stimulation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Aust Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  2. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. https://doi.org/10.1111/j.1541-0420.2005.00440.x

    Article  PubMed  Google Scholar 

  3. Anfora G, Tasin M, Bäckmann AC, Leonardelli E, De Cristofaro A, Lucchi A, Ioriatti C (2008) Olfactory responses of Eupoecilia ambiguella (Hübner) (Lepidoptera Tortricidae) females to volatiles from grapevine. IOBC/wprs Bull 36:233–236

    Google Scholar 

  4. Baker EA, Hunt GM, Stevens PJG (1983) Studies of plant cuticle and spray droplet interactions: a fresh approach. Pestic Sci 14:645–658. https://doi.org/10.1002/ps.2780140613

    Article  CAS  Google Scholar 

  5. Bianchi G, Murelli C, Vlahov G (1992) Surface waxes from olive fruits. Phytochemistry 31:3503–3506. https://doi.org/10.1016/0031-9422(92)83716-C

    Article  CAS  Google Scholar 

  6. Bovey P (1966) Superfamille des Tortricoidea. L’Eudémis de la vigne, vol 2. Entomologie appliquée à l’agriculture. Masson et Cie, Paris

  7. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/a:1010933404324

    Article  Google Scholar 

  8. Brooks JS, Williams EH, Feeny P (1996) Quantification of contact oviposition stimulants for black swallowtail butterfly, Papilio polyxenes, on the leaf surfaces of wild carrot, Daucus carota. J Chem Ecol 22:2341–2357. https://doi.org/10.1007/BF02029551

    Article  PubMed  CAS  Google Scholar 

  9. Brückner A, Heethoff M (2017) A chemo-ecologists’ practical guide to compositional data analysis. Chemoecology 27:33–46. https://doi.org/10.1007/s00049-016-0227-8

    Article  CAS  Google Scholar 

  10. Casado CG, Heredia A (2001) Ultrastructure of the cuticle during growth of the grape berry (Vitis vinifera). Physiol Plant 111:220–224. https://doi.org/10.1034/j.1399-3054.2001.1110213.x

    Article  CAS  Google Scholar 

  11. Comménil P, Belingheri L, Audran JC, Collas A, Dehorter B (1996) Anti-botrytis activity in epicuticular waxes of young grape berries of Vitis vinifera (Pinot noir). J Int Sci Vigne Vin 30:7. https://doi.org/10.20870/oeno-one.1996.30.1.1113

    Article  Google Scholar 

  12. Comménil P, Brunet L, Audran JC (1997) The development of the grape berry cuticle in relation to susceptibility to bunch rot disease. J Exp Bot 48:1599–1607. https://doi.org/10.1093/jxb/48.8.1599

    Article  Google Scholar 

  13. Cozzi G, Pascale M, Perrone G, Visconti A, Logrieco A (2006) Effect of Lobesia botrana damages on black aspergilli rot and ochratoxin A content in grapes. Int J Food Microbiol 111:S88–S92. https://doi.org/10.1016/j.ijfoodmicro.2006.03.012

    Article  PubMed  CAS  Google Scholar 

  14. Fermaud M, Giboulot A (1992) Influence of Lobesia botrana larvae on field severity of Botrytis rot of grape berries. Plant Dis 76:404–409. https://doi.org/10.1094/PD-76-0404

    Article  Google Scholar 

  15. Fermaud M, Le Menn R (1992) Transmission of Botrytis cinerea to grapes by grape berry moth larvae. Phytopathology 82:1393–1398. https://doi.org/10.1094/Phyto-82-1393

    Article  Google Scholar 

  16. Gabel B, Thiéry D (1996) Oviposition response of Lobesia botrana females to long-chain free fatty acids and esters from its eggs. J Chem Ecol 22:161–171. https://doi.org/10.1007/bf02040207

    Article  PubMed  CAS  Google Scholar 

  17. Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference–performance relationships in phytophagous insects. Ecol Lett 13:383–393. https://doi.org/10.1111/j.1461-0248.2009.01433.x

    Article  PubMed  Google Scholar 

  18. Gross J, Gündermann G (2016) Principles of IPM in cultivated crops and implementation of innovative strategies for sustainable plant protection. In: Horowitz A, Ishaaya I (eds) Advances in insect control and resistance management. Springer, Cham, pp 9–26

    Google Scholar 

  19. Harari AR, Zahavi T, Gordon D, Anshelevich L, Harel M, Ovadia S, Dunkelblum E (2007) Pest management programmes in vineyards using male mating disruption. Pest Manag Sci 63:769–775. https://doi.org/10.1002/ps.1365

    Article  PubMed  CAS  Google Scholar 

  20. Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical Ecology and Management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137. https://doi.org/10.1603/ec10443

    Article  PubMed  CAS  Google Scholar 

  21. Jetter R, Kunst L, Samuels AL (2006) Composition of plant cuticular waxes. In: Riederer M, Müller C (eds) Annual plant reviews biology of the plant cuticle, vol 23. Blackwell, Oxford, pp 145–181

    Google Scholar 

  22. Juma G et al (2016) Influence of host-plant surface chemicals on the oviposition of the cereal stemborer busseola fusca. J Chem Ecol 42:394–403. https://doi.org/10.1007/s10886-016-0704-0

    Article  PubMed  CAS  Google Scholar 

  23. Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33. https://doi.org/10.18637/jss.v069.i01

    Article  Google Scholar 

  24. Li G, Ishikawa Y (2006) Leaf epicuticular wax chemicals of the Japanese knotweed Fallopia japonica as oviposition stimulants for Ostrinia latipennis. J Chem Ecol 32:595–604. https://doi.org/10.1007/s10886-005-9022-7

    Article  PubMed  CAS  Google Scholar 

  25. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  26. Lorenz DH, Eichhorn KW, Blei-Holder H, Klose R, Meier U, Weber E (1994) Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp.). Vitic Enol Sci 49:66–70

    Google Scholar 

  27. Maher N, Thiéry D (2003) Bunch extracts of Vitis vinifera at different development stages stimulate or deter oviposition in Lobesia botrana females. IOBC/wprs Bull 26:135–149

    Google Scholar 

  28. Maher N, Thiéry D (2004a) A bioassay to evaluate the activity of chemical stimuli from grape berries on the oviposition of Lobesia botrana (Lepidoptera: Tortricidae). Bull Entomol Res 94:27–33. https://doi.org/10.1079/ber2003276

    Article  PubMed  CAS  Google Scholar 

  29. Maher N, Thiéry D (2004b) Distribution of chemo- and mechanoreceptors on the tarsi and ovipositor of female European grapevine moth, Lobesia botrana. Entomol Exp Appl 110:135–143. https://doi.org/10.1111/j.0013-8703.2004.00131.x

    Article  Google Scholar 

  30. Maher N, Thiéry D, Städler E (2006) Oviposition by Lobesia botrana is stimulated by sugars detected by contact chemoreceptors. Physiol Entomol 31:14–22. https://doi.org/10.1111/j.1365-3032.2005.00476.x

    Article  CAS  Google Scholar 

  31. Marchal P (1912) Rapport sur les travaux acomplis par la mission dÕetudes de la Cochylis et de lÕEudemis. Libr. Polythec. Paris et Liège, Paris

  32. Markheiser A, Rid M, Biancu S, Gross J, Hoffmann C (2018) Physical factors influencing the oviposition behaviour of European grapevine moths Lobesia botrana and Eupoecilia ambiguella. J Appl Entomol 142:201–210. https://doi.org/10.1111/jen.12423

    Article  CAS  Google Scholar 

  33. Martín-Vertedor D, Ferrero-García JJ, Torres-Vila LM (2010) Global warming affects phenology and voltinism of Lobesia botrana in Spain. Agric For Entomol 12:169–176. https://doi.org/10.1111/j.1461-9563.2009.00465.x

    Article  Google Scholar 

  34. Meier U et al (2009) The BBCH system to coding the phenological growth stages of plants–history and publications. Journal für Kulturpflanzen 61:41–52

    Google Scholar 

  35. Mondy N, Corio-Costet MF (2000) The response of the grape berry moth (Lobesia botrana) to a dietary phytopathogenic fungus (Botrytis cinerea): the significance of fungus sterols. J Insect Physiol 46:1557–1564. https://doi.org/10.1016/s0022-1910(00)00085-8

    Article  PubMed  CAS  Google Scholar 

  36. Mondy N, Charrier B, Fermaud M, Pracros P, Corio-Costet MF (1998) Mutualism between a phytopathogenic fungus (Botrytis cinerea) and a vineyard pest (Lobesia botrana). Positive effects on insect development and oviposition behaviour. C R Acad Sci Paris Sci e la vie Life Sci 321:665–671. https://doi.org/10.1016/s0764-4469(98)80006-1

    Article  Google Scholar 

  37. Moreau J, Benrey B, Thiéry D (2006) Grape variety affects larval performance and also female reproductive performance of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae). Bull Entomol Res 96:205–212. https://doi.org/10.1079/ber2005417

    Article  PubMed  CAS  Google Scholar 

  38. Moreau J, Monceau K, Thiéry D (2016) Larval food influences temporal oviposition and egg quality traits in females of Lobesia botrana. J Pest Sci 89:439–448. https://doi.org/10.1007/s10340-015-0695-6

    Article  Google Scholar 

  39. Müller C (2006) Plant–insect interactions on cuticular surfaces. In: Riederer M, Müller C (eds) Annual plant reviews biology of the plant cuticle, vol 23. Blackwell, Oxford, pp 398–417

    Google Scholar 

  40. Müller C, Hilker M (2001) Host finding and oviposition behavior in a chrysomelid specialist—the importance of host plant surface waxes. J Chem Ecol 27:985–994. https://doi.org/10.1023/a:1010343205114

    Article  PubMed  Google Scholar 

  41. Müller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651. https://doi.org/10.1007/s10886-005-7617-7

    Article  PubMed  CAS  Google Scholar 

  42. Oksanen J et al (2017) ‘vegan’. Community Ecology Package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan

  43. Palliotti A, Cartechini A (2001) Developmental changes in gas exchange activity in flowers, berries, and tendrils of field-grown Cabernet Sauvignon. Am J Enol Vitic 52:317–323

    Google Scholar 

  44. Pensec F et al (2014) Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera) cultivars grown in the upper rhine valley. J Agric Food Chem 62:7998–8007. https://doi.org/10.1021/jf502033s

    Article  PubMed  CAS  Google Scholar 

  45. Possingham JV, Chambers TC, Radler F, Grncarevic M (1967) Cuticular transpiration and wax structure and composition of leaves and fruit of Vitis vinifera. Aust J Biol Sci 20:1149–1154

    Article  Google Scholar 

  46. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org

  47. Radler F (1965) The surface waxes of the sultana vine (Vitis vinifera cv. Thompson Seedless). Aust J Biol Sci 18:1045–1056

    Article  CAS  Google Scholar 

  48. Radler F, Horn D (1965) The composition of grape cuticle wax. Aust J Chem 18:1059–1069

    Article  CAS  Google Scholar 

  49. Ramaswamy SB (1988) Host finding by moths: sensory modalities and behaviours. J Insect Physiol 34:235–249

    Article  Google Scholar 

  50. Reineke A, Thiéry D (2016) Grapevine insect pests and their natural enemies in the age of global warming. J Pest Sci 89:313–328. https://doi.org/10.1007/s10340-016-0761-8

    Article  Google Scholar 

  51. Savopoulou-Soultani M, Tzanakakis ME (1988) Development of Lobesia botrana (Lepidoptera: Tortricidae) on Grapes and Apples Infected with the Fungus Botrytis cinerea. Environ Entomol 17:1–6. https://doi.org/10.1093/ee/17.1.1

    Article  Google Scholar 

  52. Savopoulou-Soultani M, Stavridis DG, Tzanakakis ME (1990) Development and reproduction of Lobesia botrana on vine and olive inflorescences. Entomol Hell 8:29–36

    Article  Google Scholar 

  53. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect–plant biology, 2nd edn. Oxford University Press, New York

    Google Scholar 

  54. Sharon R, Zahavi T, Soroker V, Harari AR (2009) The effect of grape vine cultivars on Lobesia botrana (Lepidoptera: Tortricidae) population levels. J Pest Sci 82:187–193. https://doi.org/10.1007/s10340-008-0238-5

    Article  Google Scholar 

  55. Shin KH, Choi IM, Chung KH, Lee JM, Park HS (2010) Morphological development and chemical composition of epicuticular wax crystals in ‘Campbell Early’ grape. Hortic Environ Biotechnol 51(4):253–256

    CAS  Google Scholar 

  56. Silva-Moreno E, Brito-Echeverría J, López M, Ríos J, Balic I, Campos-Vargas R, Polanco R (2016) Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in Botrytis cinerea. World J Microbiol Biotechnol 32:74

    Article  PubMed  CAS  Google Scholar 

  57. Sprute D, Greif A, Gross J, Hoffmann C, Rid M, König M (2016) Schädlingsmonitoring des Traubenwicklers durch Auswertung einer Motten-Eiablage-Karte mittels Smartphone-Anwendung. GIL Jahrestagung 2016:201–204

    Google Scholar 

  58. Städler E (2002) Plant chemical cues important for egg deposition by herbivorous insects. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell Publishing, Berlin, pp 171–197

    Google Scholar 

  59. Svobodová E, Trnka M, Dubrovský M, Semerádová D, Eitzinger J, Štěpánek P, Žalud Z (2014) Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest Manag Sci 70:708–715. https://doi.org/10.1002/ps.3622

    Article  PubMed  CAS  Google Scholar 

  60. Tasin M et al (2005) Antennal and behavioral responses of grapevine moth Lobesia botrana females to volatiles from grapevine. J Chem Ecol 31:77–87. https://doi.org/10.1007/s10886-005-0975-3

    Article  PubMed  CAS  Google Scholar 

  61. Tasin M, Anfora G, Leonardelli E, Ioriatti C, Lucchi A, De Cristofaro A, Pertot I (2009) A bioassay-based approach for the evaluation of host-plant cues as oviposition stimuli in grapevine moth. IOBC/wprs Bull 41:83–86

    Google Scholar 

  62. Tasin M, Lucchi A, Ioriatti C, Mraihi M, De Cristofaro A, Boger Z, Anfora G (2011) Oviposition response of the moth Lobesia botrana to sensory cues from a host plant. Chem Senses 36:633–639. https://doi.org/10.1093/chemse/bjr027

    Article  PubMed  Google Scholar 

  63. Tasin M, Knudsen GK, Pertot I (2012) Smelling a diseased host: grapevine moth responses to healthy and fungus-infected grapes. Anim Behav 83:555–562. https://doi.org/10.1016/j.anbehav.2011.12.003

    Article  Google Scholar 

  64. Thiéry D, Moreau J (2005) Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia 143:548–557. https://doi.org/10.1007/s00442-005-0022-7

    Article  PubMed  Google Scholar 

  65. Thiéry D, Monceau K, Moreau J (2014) Different emergence phenology of European grapevine moth (Lobesia botrana, Lepidoptera: Tortricidae) on six varieties of grapes. Bull Entomol Res 104(3):277–287. https://doi.org/10.1017/S000748531300031X

    Article  PubMed  Google Scholar 

  66. Udayagiri S, Mason CE (1997) Epicuticular wax chemicals in Zea mays influence oviposition in Ostrinia nubilalis. J Chem Ecol 23:1675–1687. https://doi.org/10.1023/B:JOEC.0000006443.72203.f7

    Article  CAS  Google Scholar 

  67. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Google Scholar 

  68. Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100. https://doi.org/10.1007/s10886-009-9737-y

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Svenja Stein and Sandra Schubach (JKI, Dossenheim, Germany) for excellent laboratory assistance. We are grateful to Adrian Brückner (Technical University of Darmstadt, Germany) and Doreen Gabriel (JKI, Braunschweig, Germany) for statistical advices. We thank Sandra Biancu and Claudia Vogel (JKI, Siebeldingen, Germany) for cultivation of insects. The authors thank Patricia Mohr (Keyence GmbH, Neu-Isenburg, Germany) for providing the digital microscope free of charge. MR and AM were supported by funds of the Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the innovation support Program Number 2814701611.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jürgen Gross.

Additional information

Communicated by P. G. Becher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Chromatograms of berry wax extracts from V. vinifera ‘Regent’ at BBCH 77 (above) and BBCH 89 (bottom, mirrored) obtained after derivatization and GC-FID analysis. IS = Internal standard = Tetracosane, OA = Oleanolic acid, MA = Montanic acid. (TIFF 37 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rid, M., Markheiser, A., Hoffmann, C. et al. Waxy bloom on grape berry surface is one important factor for oviposition of European grapevine moths. J Pest Sci 91, 1225–1239 (2018). https://doi.org/10.1007/s10340-018-0988-7

Download citation

Keywords

  • Lobesia botrana
  • Eupoecilia ambiguella
  • Epicuticular wax
  • Gas chromatography
  • Vitis vinifera
  • Oleanolic acid