A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides

Biological approaches to control Tetranychus urticae

Abstract

The two-spotted spider mite, Tetranychus urticae Koch, is a phytophagous pest that can cause significant yield losses in many agricultural crops, including fruits, cotton, vegetables, and ornamentals. To date, 3877 host species have been reported around the world in both outdoor crops and greenhouses. In this paper, we present the common methods to control this pest including chemical and biological practices. While synthetic acaricides have been widely used to manage T. urticae, in recent years, interest in pesticides derived from plants has increased considerably as a result of environmental concerns and pest population resistance to conventional pesticides. Some botanical pesticides can be easily produced, are relatively efficient against pests, and with few exceptions, their mammalian toxicity and persistence in the environment is low. Thus, the use of plant extracts appears to be a promising alternative strategy for pest management. The present paper reviews studies on the biocidal activities of plant extracts, including essential oils, against T. urticae, a plant-feeding mite found worldwide and a serious agricultural and home garden pest.

This is a preview of subscription content, log in to check access.

References

  1. Abo-Moch F, Saadi I, Holland D, Mansoura F (2010) The potential of pomegranate peel and heartwood extracts as a source of new bioacaricides to control the carmine spider mite Tetranychus cinnabarinus. Israel J Plant Sci 58:13–17

    Article  Google Scholar 

  2. Aksoy HM, Mennan S (2004) Biological control of Heterodera cruciferae (Tylenchida: Heteroderidae) Franklin 1945 with fluorescent Pseudomonas spp. J Phytopathol 152:514–518

    Article  Google Scholar 

  3. Aksoy HM, Ozman-Sullivan SK, Ocal H, Celik N, Sullivan GT (2008) The effects of Pseudomonas putida biotype B on Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 46:223–230

    PubMed  Article  Google Scholar 

  4. Akthar Y, Isman MB (2004) Feeding responses of specialist herbivores to plant extracts and pure allelochemicals: effects of prolonged exposure. Entomol Exp Appl 111:201–208

    Article  Google Scholar 

  5. Anderson IB, Mullen WH, Meeker JE, Khojasteh-Bakht SC, Oishi S, Nelson SD et al (1996) Pennyroyal toxicity: measurement of toxic metabolite levels in two cases and review of the literature. Ann Intern Med 124:726–734

    PubMed  CAS  Article  Google Scholar 

  6. Antonious GF, Snyder JC (2006) Natural products: repellency and toxicity of wild tomato leaf extracts to the two-spotted spider mite, Tetranychus urticae Koch. J Environ Sci Heal B 41:43–55

    CAS  Article  Google Scholar 

  7. Antonious G, Meyer J, Snyder J (2006) Toxicity and repellency of hot pepper extracts to spider mite, Tetranychus urticae Koch. J Environ Sci Heal B 41:1383–1391

    CAS  Article  Google Scholar 

  8. Arnason JT, Philogene BJR, Morand P (1989) Insecticides of plant origin. ACS Symposium Series, London

    Google Scholar 

  9. Aslan I, Ozbek H, Calmasur O, Sahin F (2004) Toxicity of essential oil vapours to two greenhouse pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Ind Crops Prod 19:167–173

    CAS  Article  Google Scholar 

  10. Assareh MH, Jaimand K, Rezaee MB (2007) Chemical composition of the essential oils of six Eucalyptus species (Myrtaceae) from South West of Iran. J Essent Oil Research 19:8–10

    CAS  Article  Google Scholar 

  11. Attia S, Grissa KL, Lognay G, Heuskin S, Mailleux AC, Hance T (2011a) Chemical composition and acaricidal properties of Deverra scoparia essential oil (Araliales: Apiaceae) and blends of its major constituents against Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 104:1220–1228

    PubMed  CAS  Article  Google Scholar 

  12. Attia S, Grissa KL, Mailleux AC, Lognay G, Heuskin S, Mayoufi S, Hance T (2011b) Effective concentrations of garlic distillate (Allium sativum) for the control of Tetranychus urticae (Tetranychidae). J Appl Entomol. doi:10.1111/j.1439-0418.2011.01640.x

    Google Scholar 

  13. Attia S, Grisssa LK, Ghrabi GZ, Mailleux AC, Lognay G, Le Goff G, Hance T (2011c) Contrôle de Tetranychus urticae par les extraits de plantes en vergers d’agrumes. Faunistic Entomol 63:229–235

    Google Scholar 

  14. Attia S, Grisssa LK, Ghrabi-Gammar Z, Lognay G, Mailleux A-C, Hance T (2011d) Assessment of the acaricidal activity of several plant extracts on the phytophagous mite Tetranychus urticae (Tetranychidae) in Tunisian citrus orchards. SRBE 147:71–79

    Google Scholar 

  15. Attia S, Grisssa LK, Ghrabi GZ, Mailleux A-C, Lognay G, Hance T (2012a) Acaricidal activity of 31 essential oils extracted from plants collected in Tunisia. J Essent Oil Res 24:279–288

    CAS  Article  Google Scholar 

  16. Attia S, Grissa KL, Lognay G, Heuskin S, Mailleux AC, Hance T (2012b) Acaricidal activities of Santolina africana and Hertia cheirifolia against Tetranychus urticae (Acari: Tetranychidae). Pest Manag Sci. doi:10.1002/ps.3269

    PubMed  Google Scholar 

  17. Auger J, Arnault I, Diwo-Allain S, Ravier M, Molia F, Pettiti M (2004) Insecticidal and fungicidal potential of Allium substances as biofumigants. Agroindustria 3:5–8

    Google Scholar 

  18. Ay R, Yorulmaz S (2010) Inheritance and detoxification enzyme levels in Tetranychus urticae Koch (Acari: Tetranychidae) strain selected with chlorpyrifos. J Pest Sci 83:85–93

    Article  Google Scholar 

  19. Bajwa W, Schaefers G (1998) Indigenous crop protection practices in sub-saharan East Africa. http//www.ippc.orst.educ/ipmafrica/elements/ncpp. Accessed 23 June 2010

  20. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475

    PubMed  CAS  Article  Google Scholar 

  21. Bandyopadhyay S, Roy A, Das S (2001) Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci 161:1025–1033

    CAS  Article  Google Scholar 

  22. Banerjee S, Hess D, Majumder P, Roy D, Das S (2004) The interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid. J Biol Chem 279:23782–23789

    PubMed  CAS  Article  Google Scholar 

  23. Basta A, Spooner-Hart RN (2002) Efficacy of an extract of Dorrigo pepper against two-spotted mite and greenhouse thrips. In: Spray oils beyond 2000, Australia. University of Western, Sydney, pp 471–476

  24. Ben Haj JI, Ghrabi GZ, Zouaghi M (2007) Valorisation de la biodiversité en plantes médicinales et étude ethnobotanique de la flore du sud-ouest du kef. Ethnopharmacologia 39:36–43

    Google Scholar 

  25. Berger A (1994) Using natural pesticides: current and future perspectives. A report for the plant protection. Improvement programme in Botswana, Zambia and Tanzania

  26. Bethke A, Siapno O, Redak R (2001) The latest miticides. Greenhouse Product News 14:54–56

    Google Scholar 

  27. Boyd DW, Alverson DR (2000) Repellency effects of garlic extracts on the two-spotted spider mite, Tetranychus urticae Koch. J Entomol Sci 35:86–90

    Google Scholar 

  28. Braga RB, Araujo JV, Silva AR, Araujo JM, Carvalho RO, Tavela AO, Campos AK, Carvalho GR (2009) Biological control of horse cyathostomin (Nematoda: Cyathostominae) using the nematophagous fungus Duddingtonia flagrans in tropical southeastern Brazil. Vet Parasitol 163:335–340

    Google Scholar 

  29. Brito HM, Gondim Júnior MGC, Oliveira JV, Câmara CAG (2006) Toxicidade de formulaçoes de nim (Azadirachta indica A. Juss.) ao ácaro-rajado ea Euseius alatus De Leone Phytoseiulus macropilis (Banks) (Acari: Phytoseiidae); Toxicity of neem (Azadirachta indica A. Juss) formulations for twospotted spider mite and Euseius alatus De Leon and Phytoseiulus macropilis (Banks) (Acari: Phytoseiidae). Neotrop Entomol 35:500–505

    PubMed  Article  Google Scholar 

  30. Bruce TJ, Birkett MA, Blande J, Hooper AM, Martin JL, Khambay B (2005) Response of economically important aphids to components of Hemizygia petiolata essential oil. Pest Manag Sci 61:1115–1121

    PubMed  CAS  Article  Google Scholar 

  31. Çalmaşur Ö, Aslan İ, Şahin F (2006) Insecticidal and acaricidal effect of three Lamiaceae plant essential oils against Tetranychus urticae Koch and Bemisia tabaci Genn. Ind Crop Prod 23:140–146

    Article  CAS  Google Scholar 

  32. Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-Kill, lysis, leakage and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46:1914–1920

    PubMed  CAS  Article  Google Scholar 

  33. Castiglioni E, Vendramin JD, Tamai MA (2002) Evaluación del efecto tóxico de extractos acuosos y derivados de meliáceas sobre Tetrancychus urticae (Koch) (Acari, Tetrancychidae). Agrociencia 6:75–82

    Google Scholar 

  34. Catar G (1954) Effect of plant extracts on Ixodes ricinus. Bratislava Med J 34:1004

    CAS  Google Scholar 

  35. Cavalcanti SCH, Niculau Edos S, Blank AF, Câmara CAG, Araújo IN, Alves PB (2010) Composition and acaricidal activity of Lippia sidoides essential oil against two-spotted spider mite (Tetranychus urticae Koch). Bioresour Technol 101:829–832

    PubMed  CAS  Article  Google Scholar 

  36. CEC (2008) Commission decision of 10 April 2008, concerning the non-inclusion of rotenone, extract from equisetum and chinin-hydrochlorid in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing these substances. Official Journal of the European Union, pp 30–32

  37. Chandler D, Davidson G, Pell JK, Ball BV, Shaw K, Sunderland KD (2000) Fungal biocontrol of Acari. Biocontrol Sci Technol 3157:357–385

    Article  Google Scholar 

  38. Chapman MH, Hoy MA (1991) Relative toxicity of Bacillus thuringiensis var. tenebrionis to the two-spotted spider mite (Tetranychus urticae Koch) and its predator Metaseiulus occidentalis (Nesbitt) (Acari, Tetranychidae and Phytoseiidae). J Appl Entomol 111:147–154

    Article  Google Scholar 

  39. Chiam WY, Huang Y, Chen SX, Shuit HH (1999) Toxic and antifeedant effects of allyl disulphide on Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophilus zeamais (Coleoptera: Curculionidae). J Econ Entomol 92:239–245

    CAS  Google Scholar 

  40. Chiasson H, Beloin N (2007) Les huiles essentielles, des biopesticides «Nouveau genre». Ann Soc Entomol Que 14:3–6

    Google Scholar 

  41. Chiasson H, Bélanger A, Bostanian N, Vincent C, Poliquin A (2001) Acaricidal properties of Artemisia absinthium and Tanacetum vulgare (Asteraceae) essential oils obtained by three methods of extraction. J Econ Entomol 94:167–171

    PubMed  CAS  Article  Google Scholar 

  42. Chiasson H, Bostanian NJ, Vincent C (2004) Acaricidal properties of a Chenopodium-based botanical. J Econ Entomol 97:1373–1377

    PubMed  CAS  Article  Google Scholar 

  43. Chiasson H, Delisle U, Bostanian NJ, Vincent C (2008) Recherche, développement et commercialisation de FACIN, un biopesticide d’origine végétale. Etude d’un cas de réussite en Amérique du Nord 98:451–463

    Google Scholar 

  44. Chitwood DJ (2002) Phytochemical based strategies for nematode control. Annu Rev Phytopathol 40:221–249

    PubMed  CAS  Article  Google Scholar 

  45. Choi W-I, Lee S-G, Park H-M, Ahn Y-J (2004) Toxicity of plant essential oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). J Econ Entomol 97:553–558

    PubMed  CAS  Article  Google Scholar 

  46. Clegg CJ, Mackean DG (1994) Advanced biology: principles and applications. John Murray, London

    Google Scholar 

  47. Cloyd RA, Galle CL, Keith SR, Kalscheur NA, Kemp KE (2009) Effect of commercially available plant-derived essential oil products on arthropod pests. J Econ Entomol 102:1567–1579

    PubMed  CAS  Article  Google Scholar 

  48. Collange B (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Prot 30:1251–1262

    Article  Google Scholar 

  49. Dabrowski TZ, Seredynska US (2007) Characterisation of the two-spotted spider mite (Tetranychus urticae Koch, Acari: Tetranychidae) response to aqueous extracts from selected plant species. J Plant Prot Res 47:113–124

    Google Scholar 

  50. Dang QL, Choi YH, Choi GJ, Jang KS, Park MS, Park N-J et al (2010) Pesticidal activity of ingenane diterpenes isolated from Euphorbia kansui against Nilaparvata lugens and Tetranychus urticae. J Asia Pacific Entomol 13:51–54

    CAS  Article  Google Scholar 

  51. De Araujo MJC, De Oliveira WH, Born FDS, Ribeiro NDC, De Moraes MM, Neves RCS, et al (2010) Actividade Fumigante Do Oleo Essential de Folhas de Piper caldensis C. DC. Sobre Tetranychus urticae Koch (Acari: Tetranychidae). XI JEPEX

  52. Dekeyser MA (2005) Acaricide mode of action. Pest Manag Sci 61:103–110

    PubMed  CAS  Article  Google Scholar 

  53. Duso C, Chiarini F, Conte L, Bonora V, Monta LD, Otto S (2004) Fogging can control Tetranychus urticae on greenhouse cucumbers. J Pest Sci 77:105–111

    Article  Google Scholar 

  54. Duso C, Malagnini V, Pozzebon A, Castagnoli M, Liguori M, Simoni S (2008) Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of Tetranychus urticae and Phytoseiulus persimilis (Acari Tetranychidae, Phytoseiidae). Biol Control 47:16–21

    Article  Google Scholar 

  55. El-Sharabasy HM (2010) Acaricidal activities of Artemisia judaica L. extracts against Tetranychus urticae Koch and its predator Phytoseiulus persimilis Athias Henriot (Tetranychidae: Phytoseiidae). J Biopest 3:514–519

    Google Scholar 

  56. Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C: Toxicol Pharmacol 130:325–337

    CAS  Article  Google Scholar 

  57. Enan E (2005a) Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem Physiol 59:161–171

    PubMed  CAS  Article  Google Scholar 

  58. Enan E (2005b) Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem Mol Biol 35:309–321

    PubMed  CAS  Article  Google Scholar 

  59. Erler F, Tunç T (2005) Monoterpenoids as fumigants against greenhouse pests: toxic, development and reproduction-inhibiting effects. J Plant Dis Protect 112:181–192

    Google Scholar 

  60. Feng R, Isman MB (1995) Selection for resistance to azadirachtin in the green peach aphid, Myzus persicae. Experientia 51:831–833

    CAS  Article  Google Scholar 

  61. Ferrero M, Calvo FJ, Atuahiva T, Tixier M-S, Kreiter S (2011) Biological control of Tetranychus evansi Baker & Pritchard and Tetranychus urticae Koch by Phytoseiulus longipes Evans in tomato greenhouses in Spain [Acari: Tetranychidae, Phytoseiidae]. Biol Control 58:30–35

    Article  Google Scholar 

  62. Flamini G (2003) Acaricides of natural origin, personal experiences and review of the literature (1990–2001). Stud Nat Prod Chem 28:381–451

    CAS  Article  Google Scholar 

  63. Flamini G (2006) Acaricides of natural origin. Part 2. Review of the literature (2002–2006). Nat Prod Commun 1:1151–1158

    CAS  Google Scholar 

  64. Floris I, Satta A, Cabras P, Garau VL, Angioni A (2004) Comparison between two thymol formulations in the control of Varroa destructor: effectiveness, persistence, and residues. J Econ Entomol 97:187–191

    PubMed  CAS  Article  Google Scholar 

  65. Fytoweb (2008) http://www.fytoweb.fgov.be/

  66. Georghiou GP (1986) The magnitude of the resistance problem. In: Pesticide resistance: strategies and tactics for management. National Academy Press, Washington, DC, pp 11–44

  67. Gillespie DR, Roitberg B, Basalyga E, Johnstone M, Opit G, Rodgers J, Sawyer N (1998) Biology and application of Feltiella acarisuga (Vallot) (Diptera: Cecidomyiidae) for biological control of two-spotted spider mites on greenhouse vegetable crops. Pacific Agri-Food Research Centre (Agassiz) Technical Report 145 Agriculture and Agri-Food Canada

  68. Gokce A, Isaacs R, Whalon ME (2011) Ovicidal, larvicidal and anti-ovipositional activities of Bifora radians and other plant extracts on the grape berry moth Paralobesia viteana (Clemens). J Pest Sci 84:487–493

    Article  Google Scholar 

  69. Golob P, Webly DJ (1989) The use of plants and minerals as traditional protectants of stored products. Trop Prod Inst 138:1–32

    Google Scholar 

  70. Han MK, Kim SI, Ahn YJ (2006) Insecticidal and antifeedant activities of medicinal plant extracts against Attagenus unicolor japonicus (Coleoptera: Dermestidae). J Stored Prod Res 42:15–22

    Google Scholar 

  71. Han J, Choi B-R, Lee S-G, Kim SI, Ahn Y-J (2010) Toxicity of plant essential oils to acaricide-susceptible and -resistant Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus (Acari: Phytoseiidae). J Econ Entomol 103:1293–1298

    PubMed  CAS  Article  Google Scholar 

  72. Hay RKM, Watermen PG (1993) Volatile oil crops. Wiley, New York

    Google Scholar 

  73. Helle H, Sabelis MW (1985) Spider mites: their biology, natural enemies and control. Elsevier, Amsterdam

    Google Scholar 

  74. Heuskin S (2011) Contribution to the study of semiochemical slow-release formulations as biological control devices. PhD thesis. Université de Liège, Gembloux, Agrobiotech, Belgium

  75. Hincapié Ll CA, López PGE, Torres ChR (2008) Comparison and characterisation of garlic (Allium sativum L.) bulbs extracts and their effect on mortality and repellency of Tetranychus urticae Koch (Acari: Tetranychidae). Chil J Agric Res 68:317–327

    Google Scholar 

  76. Ho SH, Koh L, Ma Y, Huang Y, Sim KY (1996) The oil of garlic, Allium sativum L. (Amaryllidaceae), as a potential grain protectant against Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. Postharvest Biol Technol 9:41–48

    CAS  Article  Google Scholar 

  77. Höld KM, Sirisoma NS, Ikeda T, Narahashi T, Casida JE (2000) α-Thujone (the active component of absinthe): γ-aminobutyric acid type a receptor modulation and metabolic detoxification. Proc Natl Acad Sci USA 97:3826–3831

    PubMed  Article  Google Scholar 

  78. Hollingworth RM, Ahammadsahib KI, Gadelhak G, McLaughlin JL (1994) New inhibitors of complex I of the mitochondrial electron transport chain with activity as pesticides. Biochem Soc Trans 22:230–233

    PubMed  CAS  Google Scholar 

  79. Houghton PJ, Jayne M, Ren Y (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23:181–199

    PubMed  CAS  Article  Google Scholar 

  80. Huang Y, Chen SX, Ho SH (2000) Bioactivities of methyl allyl disulphide and diallyl trisulfide from essential oils of garlic to two species of stored-product pests, Sitophilus zeamais (Coleoptera: Curculionidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). J Econ Entomol 93:537–543

    PubMed  CAS  Article  Google Scholar 

  81. Huang Y, Ho SH, Lee HC, Yap YL (2002) Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res 38:403–412

  82. Huignard J, Lapied B, Dugravot S, Magnin-Robert M, Ketoh GK (2008) Modes d’action neurotoxiques des derives soufres et de certaines huiles essentielles et risques lies a leur utilisation. In: Philogène B et al (eds) Biopesctides d’origine végétale. Lavoisier, Paris, pp 219–231

    Google Scholar 

  83. Hussein H, Abou-Elelia M, Amer SAA, Momen FM (2006) Repellency and toxicity of extracts from Capparis aegyptia L. to Tetranychus urticae Koch. (Acari: Tetranychidae). Acta Phytopathol Hung 41:331–340

    Article  Google Scholar 

  84. IRAC (2008) Mode of Action Classification. http://www.irac-online.org

  85. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    CAS  Article  Google Scholar 

  86. Isman MB (2001) Pesticides based on plant essential oils for management of plant pests and diseases. In: symposium on development of natural pesticides from forest resources. Republic of Korea, Seoul, pp 1–9

  87. Isman MB (2004) Plant essential oils as green pesticides for pest and disease management. ACS Symp Ser 887:41–51

    CAS  Article  Google Scholar 

  88. Isman MB (2006) The role of botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annl Rev Entomol 51:45–66

    CAS  Article  Google Scholar 

  89. Isman MB, Akhtar Y (2007) Plant natural products as a source for developing environmentally acceptable insecticides. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Berlin, pp 235–248

    Google Scholar 

  90. Isman MB, Machial CM (2006) Pesticides based on plant essential oils: from traditional practice to commercialisation. In: Rai M, Carpinella MC (eds) Naturally occurring bioactive compounds. Elsevier, New York, pp 29–44

    Google Scholar 

  91. James RR, Xu J (2012) Mechanisms by which pesticides affect insect immunity. J Invertebr Pathol 109:175–182

    PubMed  CAS  Article  Google Scholar 

  92. Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California, London

    Google Scholar 

  93. Jhonson WT, Lyon HH (1991) Insects that feed on trees and shrubs. Cornell University, Ithaca

    Google Scholar 

  94. Katooli N, Maghsodlo R, Razavi SE (2011) Evaluation of eucalyptus essential oil against some plant pathogenic fungi. J Plant Breed Crop Sci 3:41–43

    Google Scholar 

  95. Katsvanga CAT, Chigwaza S (2004) Effectiveness of natural herbs, Fever tea (Lippia javanica) and Mexican marigold (Tagetes minuta) as substitutes to synthetic pesticides in controlling aphid species (Brevicoryne brassica) on cabbage (Brassica capitata). Trop Subtrop Agroecosyst 4:101–106

    Google Scholar 

  96. Kennedy GG (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72

    PubMed  CAS  Article  Google Scholar 

  97. Kim S (2003) Contact and fumigant activities of aromatic plant extracts and essential oils against Lasioderma serricorne (Coleoptera: Anobiidae). J Stored Prod Res 39:11–19

    CAS  Article  Google Scholar 

  98. Kim YJ, Park HM, Cho JR, Ahn YJ (2006) Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 99:954–980

    PubMed  CAS  Article  Google Scholar 

  99. Knapp M, Kashenge SS (2003) Effects of different neem formulations on the two-spotted spider mite, Tetranychus urticae Koch, on tomato (Lycopersicon Esculentum Mill.). Int J Trop Insect Sci 23:1–7

    CAS  Article  Google Scholar 

  100. Knowles CO (1997) Mechanisms of resistance to acaricides. In: Sjut V (ed) Molecular mechanisms of resistance to agrochemicals. Springer, Berlin, pp 57–77

    Google Scholar 

  101. Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopest Int 4:63–84

    Google Scholar 

  102. Kropczynska A, Pilko A, Witul A, Asshleb AM (1999) Control of two-spotted spider mite with Amblyseius californicus on cotton. IOBC/WPRS Bull 22:133–136

    Google Scholar 

  103. Kumral NA, Cobanoglu S, Yalcin C (2009) Acaricidal, repellent and oviposition deterrent activities of Datura stramonium L. against adult Tetranychus urticae (Koch). J Pest Sci 21:23–30

    Google Scholar 

  104. Kumral NA, Çobanoğlu S, Yalcin C (2010) Acaricidal, repellent and oviposition deterrent activities of Datura stramonium L. against adult Tetranychus urticae (Koch). J Pest Sci 83:173–180

    Article  Google Scholar 

  105. Kunz SE, Kemp DH (1994) Insecticides and acaricides: resistance and environmental impact. Rev Off Int Epizoot 13:1249–1286

    PubMed  CAS  Google Scholar 

  106. Landolt PJ, Hofstetter RW, Biddick LL (1999) Plant essential oils as arrestants and repellents for neonate larvae of the codling moth (Lepidoptera: Tortricidae). Environ Entomol 28:954–960

    CAS  Google Scholar 

  107. Lee S, Tsao R, Peterson C, Coats JR (1997) Insecticidal activity of monoterpenoids to Western Corn Rootworm (Coleoptera: Chrysomelidae), Twospotted Spider Mite (Acari: Tetranychidae), and House Fly (Diptera: Muscidae). J Econ Entomol 90:883–982

    PubMed  CAS  Google Scholar 

  108. MacIntosh SC, Stone TB, Sims SR, Hunst PL, Greenplate JT, Marrone PG (1990) Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. J Invertebr Pathol 56:258–266

    PubMed  CAS  Article  Google Scholar 

  109. Mansour F, Ravid U, Putievsky E (1986) Studies of the effects of essential oils isolated from 14 species of Labiatae on the carmine spider mite Tetranychus cinnabarinus. Phytoparasitica 14:137–142

    CAS  Article  Google Scholar 

  110. Maniania NK, Bugeme DM, Wekesa VW, Delalibera IJ, Knapp M (2008) Role of entomopathogenic fungi in the control of Tetranychus evansi and Tetranychus urticae (Acari: Tetranychidae), pests of horticultural crops. Exp Appl Acarol 46:259–274

  111. Marcic D (2012) Acaricides in modern management of plant-feeding mites. J Pest Sci 85:395–408

    Google Scholar 

  112. Markkula M, Tiittanen K (1969) Effect of fertilisers on the reproduction of Tetranychus telarius (L.), Myzus persicae (lz) and Acyrthosiphon pisum Harris. Ann Agric Fenn 8:9–14

    CAS  Google Scholar 

  113. Martínez-Villar E, Sáenz-De-Cabezón FJ, Moreno-Grijalba F, Marco V, Pérez-Moreno I (2005) Effects of azadirachtin on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Exp Appl Acarol 35:215–222

    PubMed  Article  CAS  Google Scholar 

  114. Mc Coy CW (1996) Pathogens of eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam, pp 481–490

    Google Scholar 

  115. McMurtry JA, Croft BA (1997) Life-styles of Phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321

    PubMed  CAS  Article  Google Scholar 

  116. Migeon A, Dorkeld F (2007) Spider Mites Web: a comprehensive database for the Tetranychidae. http://www.montpellier.inra.fr/CBGP/spmweb. Accessed 3 February 2011

  117. Miresmailli S, Isman MB (2006) Efficacy and persistence of rosemary oil as an acaricide against two-spotted spider mite (Acari: Tetranychidae) on greenhouse tomato. J Econ Entomol 99:2015–2023

    PubMed  Article  Google Scholar 

  118. Mishra AK, Dubey NK (1994) Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Appl Environ Microbiol 60:1101–1105

    PubMed  CAS  Google Scholar 

  119. Moino A, Alves SB, Pereira RM (1998) Efficacy of Beauveria bassiana (Balsamo) Vuillemin isolates for control of stored-grain pests. J Appl Entomol 122:301–305

    Google Scholar 

  120. Nasrabadi MR, Batooli H (2011) Chemical composition of essential oils of two cultivated Eucalyptus species from central Iran. J Plant Breed Crop Sci 3:379–381

    Google Scholar 

  121. Nasrabadi RM, Gholivand MB, Batooli H (2009) Chemical composition of the essential oil from leaves and flowering aerial parts of Haplophyllum Robustum Bge. (Rutaceae). Digest J Nanomater Biostruct 4:819–822

    Google Scholar 

  122. Ndungu M, Lwande W, Hassanali A, Moreka L, Chhabra SC (1995) Cleome monophylla essential oil and its constituents as tick (Rhipicephalus appendiculatus) and maize weevil (Sitophilus zeamais) repellents. Entomol Exp Appl 76:217–222

    CAS  Article  Google Scholar 

  123. Neves IIDA, Da Camara CAG, De Oliviera JCS, De Almeida AV (2011) Acaricidal activity and essential oil composition of Petiveria alliacea L. from Pernambuco (Northeast Brazil). J Essent Oil Res 23:23–26

    Article  Google Scholar 

  124. Nihoul P (1993) Controlling glasshouse climate influences the interaction between tomato glandular trichome, spider mite and predatory mite. Crop Prot 12:443–447

    Article  Google Scholar 

  125. Noudjou F, Kouninki H, Ngamo LST, Maponmestsem PM, Ngassoum M, Hance T, Haubruge E, Malaisse F, Marlier M, Lognay G (2007) Effect of site location and collecting period on the chemical composition of Hyptis spicigera Lam. an insecticidal essential oil from North-Cameroon. J Essent Oil Res 19:597–601

    CAS  Article  Google Scholar 

  126. Obeng-Ofori D, Amiteye S (2005) Efficacy of mixing vegetable oils with pirimiphos-methyl against the maize weevil, Sitophilus zeamais Motschulsky in stored maize. J Stored Prod Res 41:57–66

    CAS  Article  Google Scholar 

  127. OJEU (2009) Official Jouranl of Union Commission Decision of 8 June 2009 recognising in principle the completeness of the dossier submitted for detailed examination in view of the possible inclusion of orange oil in Annex I to Council Directive 91/414/EEC (notified under document number C-4232) 52:145–147

  128. Ojimelukwe PC, Adler C (1999) Potential of zimtaldehyde, 4-allylanisol, linalool, terpineol and other phytochemicals for the control of the confused flour beetle (Tribolium confusum J. d. V.) (Col., Tenebrionidae). Anz Schädlingskde 72:81–86

    Google Scholar 

  129. Omar AN, El Sayed IAZ, Romeh AA (2009) Chemical constituents and biocidal activity of the essential oil of Mentha Spicata L. grown in Zagazig region. J Agric Biol Sci 6:1089–1097

    Google Scholar 

  130. Osborne LS, Ehler LE, Nechols JR (1985) Biological control of the two-spotted spider mite in greenhouses. Fl Agric Exp Stn Bull 853:40

    Google Scholar 

  131. Pakayari H, Fathipour Y, Rezapanah M, Kamali K (2009) Temperature-dependent functional response of Scolothrips longicornis Priesner (Thysanoptera: Thripidae) preying on Tetranychus urticae Koch (Acari: Tetranychidae). J Asia-Pacific Entomol 12:23–26

    Article  Google Scholar 

  132. Pakayari H, Fathipour Y, Enkegaard A (2011) Estimating development and temperature thresholds of Scolothrips longicornis (Thysanoptera: Thripidae) on eggs of two-spotted spider mite using linear and nonlinear models. J Pest Sci 84:153–163

    Article  Google Scholar 

  133. Philogène BJR, Regnault-Roger C, Vincent C (2002) Produits phytosanitaires insecticides d’origine végétale: promesses d’hier et d’aujourd’hui. In: (2ème édition) Produits insecticides phytosanitaires d’origine végétale. Lavoisier, Paris, pp 1–17

  134. Pinochet G (1991) Acrinathrin: an acaricide for vineyards and orchards. Phytoma 428:54–57

    CAS  Google Scholar 

  135. Poinar G, Poinar R (1998) Parasites and pathogenes of mites. Annu Rev Entomol 43:449–469

    PubMed  CAS  Article  Google Scholar 

  136. Pontes WJT, de Oliveira JCS, da Camara CAG, Lopes A, Junior M, de Oliveira JV et al (2007) Composition and acaricidal activity of the resin’s essential oil of Protium bahianum Daly against the two-spotted spider mite (Tetranychus urticae). J Essent Oil Res 19:379–389

    CAS  Article  Google Scholar 

  137. Pontes W, Silva J, Da Camara C, Gondim-Junior M, Olivera J, Schwartz M (2010) Chemical composition and acaricidal activity of the essential oils from fruits and leaves of Protium bahianum Daly. J Essent Oil Res 22:279–282

    CAS  Article  Google Scholar 

  138. Powell C, Lindquist R (1997) Spider mites (Acari-Tetranychidae). Ball Publishing, Batavia

    Google Scholar 

  139. Press Release (2011) Spider Mites Secrets Revealed. Tiny pest’s genome opens door to novel approaches to crop protection and silk production. http://www.igc.gulbenkian.pt/media/article/87

  140. Rasikari HL, Leach DN, Waterman PG, Spooner-Hart RN, Basta AH, Banbury LK et al (2005) Acaricidal and cytotoxic activities of extracts from selected genera of Australian Lamiaceae. J Econ Entomol 98:1259–1266

    PubMed  Article  Google Scholar 

  141. REACH (2012) European Comiission environment. http://ec.europa.eu/environment/chemicals/reach/reviews_en.htm

  142. Regnault-Roger C (1997) The potential of botanical essential oils for insect pest control. IPM Rev 2:25–34

    Google Scholar 

  143. Regnault-Roger C, Hamraoui A (1993) Efficiency of plants from the South of France used as traditional protectants of Phaseolus vulgaris L. against its bruchid Acanthoscelides obtectus (Say). J Stored Prod Res 29:259–264

    Article  Google Scholar 

  144. Regnault-Roger C, Hamraoui A (1994a) Inhibition of reproduction of Acanthoscelides obtectus Say (Coleoptera), a kidney bean (Phaseolus vulgaris) bruchid, by aromatic essential oils. Crop Prot 13:624–628

    Article  Google Scholar 

  145. Regnault-Roger C, Hamraoui A (1994b) Comparison of the insecticidal effects of water extracted and intact aromatic plants on Acanthoscelides obtectus, a bruchid beetle pest of kidney beans. Chemoecology 1:1–5

    Article  Google Scholar 

  146. Regnault-Roger C, Vincent C, Arnasson JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–425

    PubMed  CAS  Article  Google Scholar 

  147. Riveiro A, Vézilier J, Weill M, Read AF, Gandon S (2010). Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathogen 6. doi:10.1371/journal.ppat.1001000

  148. Rizzieri DA, Dennehy TJ, Glover TJ (1998) Genetic analysis of dicofol resistance in two populations of the two-spotted spider mite (Acari: Tetranychidae) from New York apple orchards. J Econ Entomol 81:1271–1276

    Google Scholar 

  149. Rodriguez JG (1979) Recent advances in acarology, vol I. London, New York

    Google Scholar 

  150. Roh HS, Lim EG, Kim J, Park CG (2011) Acaricidal and oviposition deterring effects of santalol identified in sandalwood oil against the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). J Pest Sci 84:495–501

    Article  Google Scholar 

  151. Rondon SI, Price JF, Liburd OE, Francis R, Cantliffe DJ (2005) Neoseiulus californicus McGregor: a predatory mite species for controlling two-spotted spider mites in strawberries. University of Florida, IFAS, Cooperative Extension Service, Gainesville, FL. EDIS HS245

  152. Rott AS, Ponsonby DJ (2000) Improving the control of Tetranychus urticae on edible glasshouse crops using a specialist coccinellid (Stethorus punctillum Weise) and a generalist mite (Amblyseius californicus McGregor) as biocontrol agents. Biocontrol Sci Technol 10:87–498

    Article  Google Scholar 

  153. Ruscoe CNE (1977) The new NRDC pyrethroids as agricultural insecticides. Pest Sci 8:236–242

    CAS  Article  Google Scholar 

  154. Ryan MF, Byrne O (1988) Plant–insect coevolution and inhibition of acethylcholinesterase. J Chem Ecol 14:1965–1975

    CAS  Article  Google Scholar 

  155. Sabelis MW (1986) The functional response of predatory mites to the density of two-spotted spider mites. In: Metz JAJ, Diekmann O (eds) Dynamics of structured populations. Springer, Berlin

    Google Scholar 

  156. Saxena P (1989) Role of demographic data in monitoring status of women and recent fertility transition. In: Bose A, Desai PB (eds) Population planning in India. B.R. Publishing Corporation, Delhi

    Google Scholar 

  157. Shaaya E, Kostyukovsky M (2006) Essential oils: potency against stored product insects and mode of action. Stewart Posthar Rev 2:1–6

    Article  Google Scholar 

  158. Shi GL, Zhao LL, Liu SQ, Cao H, Clarke SR, Sun JH (2006) Acaricidal activities of extracts of Kochia scoparia against Tetranychus urticae, Tetranychus cinnabarinus, and Tetranychus viennensis (Acari: Tetranychidae). J Econ Entomol 99:858–863

    PubMed  CAS  Article  Google Scholar 

  159. Singh UP, Prithiviraj B, Sarma BK, Singh M, Ray AB (2001) Role of garlic (Allium sativum L.) in human and plant diseases. Indian J Exp Biol 39:310–322

    PubMed  CAS  Google Scholar 

  160. Steiner MY, Spohr LJ, Goodwin S (2011) Impact of two formulations of the acaricide bifenazate on the spider mite predator Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Aust J Entomol 50:99–105

    Article  Google Scholar 

  161. Strebler G (1989) Les Médiateurs chimiques: leur incidence sur la bioécologie des animaux. Lavoisier, Paris

    Google Scholar 

  162. Stumpf N, Zebitz CPW, Kraus W, Moores GD, Nauen R (2001) Resistance to organophosphates and biochemical genotyping of Acetylcholinesterases in Tetranychus urticae (Acari: Tetranychidae). Pest Biochem Physiol 69:131–142

    CAS  Article  Google Scholar 

  163. Sundaram KMS, Sloane L (1995) Effects of pure and formulated azadirachtin, a neem-based biopesticide, on the phytophagous spider mite, Tetranychus urticae Koch. J Environ Sci Health Part B 30:801–814

    Article  Google Scholar 

  164. Tapondjou AL, Adler C, Fontem DA, Bouda H, Reichmuth C (2005) Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. J Stored Prod Res 41:91–102

    CAS  Article  Google Scholar 

  165. Tewary DK, Bhardwaj A, Shanker A (2005) Pesticidal activities in five medicinal plants collected from mid hills of western Himalayas. Ind Crop Prod 22:241–247

    Article  Google Scholar 

  166. Tirello P, Pozzebon A, Cassanelli S, Van Leeuwen T, Duso C (2012) Resistance to acaricides in Italian strains of Tetranychus urticae: toxicological and enzymatic assays. Exp Appl Acarol 57:53–64

    PubMed  CAS  Article  Google Scholar 

  167. Tunç İ, Berger BM, Erler F, Dağlı F (2000) Ovicidal activity of essential oils from five plants against two stored-product insects. J Stored Prod Res 36:161–168

    Article  Google Scholar 

  168. Van de Vrie M, McMurtry JA, Huffaker C (1972) Ecology of Tetranychid mites and their natural enemies: a review. III. Biology, ecology, and pest status, and host-plant relations of tetranychids. Hilgardia 41:343–432

    Google Scholar 

  169. Van der Geest LP, Elliot SL, Breeuwer JA, Beerling EA (2000) Diseases of mites. Exp Appl Acarol 24:497–560

    PubMed  Article  Google Scholar 

  170. Van Leeuwen T, Van Pottelberge S, Tirry L (2006) Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch. Pest Manag Sci 62:425–433

    PubMed  Article  CAS  Google Scholar 

  171. Van Leeuwen T, Van Pottelberge S, Nauen R, Tirry L (2007) Organophosphate insecticides and acaricides antagonise bifenazate toxicity through esterase inhibition in Tetranychus urticae. Pest Manag Sci 63:1172–1177

    PubMed  Article  CAS  Google Scholar 

  172. Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieeuwenhuyze P, Nauen R, Tirry L, Denholm I (2008) Mitochondrial heteoplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. PNAS 105:5980–5985

    Google Scholar 

  173. Van Leeuwen T, Vontas T, Tsagkarakou A (2009) Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests. Springer, Dordrecht, pp 347–393

    Google Scholar 

  174. Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40:563–572

    PubMed  Article  CAS  Google Scholar 

  175. Van Nieuwenhuyse P, Van Leeuwen T, Khajehali J, Vanholme B, Tirry L (2009) Mutations in the mitochondrial cytochrome b of Tetranychus urticae Koch (Acari: Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. Pest Manag Sci 65:404–412

    PubMed  Article  CAS  Google Scholar 

  176. Wang YN, Wang HX, Shen ZJ, Zhao LL, Clarke SR, Sun JH et al (2009) Methyl palmitate, an acaricidal compound occurring in green walnut husks. J Econ Entomol 102:196–202

    PubMed  CAS  Article  Google Scholar 

  177. Whalon AE, Mota-Sanchez RM, Hollingworth, RM, Duynslager L (2008) Arthropods Resistant to Pesticides Database (ARPD). http://www.pesticideresistance.org. Accessed 18 December 2011

Download references

Acknowledgments

The authors are very grateful to Georges Van Impe and Thomas Van Leeuwen for useful discussions about Tetranychus urticae. They are also indebted to Wallonies-Bruxelles International (WBI). This is publication BRC 270 of the Biodiversity research centre at UCL.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabrine Attia.

Additional information

Communicated by M. Traugott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Attia, S., Grissa, K.L., Lognay, G. et al. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. J Pest Sci 86, 361–386 (2013). https://doi.org/10.1007/s10340-013-0503-0

Download citation

Keywords

  • Tetranychus urticae
  • Pest management
  • Essential oil
  • Plant extract