Skip to main content

Mechanisms of Acaricide Resistance in the Two-Spotted Spider Mite Tetranychus urticae

  • Chapter
  • First Online:
Biorational Control of Arthropod Pests

Abstract

The subclass Acari, comprising mites and ticks, is one of the largest and biologically most diverse groups within the class of the Arachnida, which also includes scorpions, spiders and harvestmen. They are distributed worldwide and have successfully colonised a wide range of terrestrial and aquatic habitats. The majority of mite species living on the aerial parts of higher plants feed mainly on microflora or predate on other small arthropods living on plants. However, mite species within the order of the Prostigmata, belonging to the families of the Tetranychidae (spider mites), Tenuipalpidae (false spider mites), Tarsonemidae (tarsonemid mites) and the superfamily of the Eriophyoidea (gall and rust mites) are able to use their specialized needle-like mouthparts to feed on the plant cells and tissues. Their feeding activity can lead to severe losses in field and protected crops (Walter and Proctor 1999; Evans 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlers PM, Zwicker K, Kerscher S, Brandt U (2000) Function of conserved acidic residues in the PSST homologue of complex I (NADH: ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 275: 23577–23582

    Article  CAS  PubMed  Google Scholar 

  • Aiki Y, Kozaki T, Mizuno H, Kono Y (2005) Amino acid substitution in Ace paralogous acetylcholinesterase accompanied by organophosphate resistance in the spider mite Tetranychus kanzawai. Pestic Biochem Physiol 82: 154–161

    Article  CAS  Google Scholar 

  • Aldridge WN (1950) Some properties of specific cholinesterase with particular reference to the mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E 605) and analogues. Biochem J 46: 451–460

    CAS  PubMed  Google Scholar 

  • Alon M, Alon F, Nauen R, Morin S (2008) Organophosphate resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochem Mol Biol 38: 940–949

    Article  CAS  PubMed  Google Scholar 

  • Anazawa Y, Tomita T, Aiki T, Kozaki T, Kono Y (2003) Sequence of a cDNA encoding acetylcholinesterase from susceptible and resistant two-spotted spider mite, Tetranychus urticae. Insect Biochem Mol Biol 33: 509–514

    Article  CAS  PubMed  Google Scholar 

  • Andrews MC, Callaghan A, Field LM, Williamson MS, Moores GD (2004) Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover Insect Mol Biol 13: 555–561

    Article  CAS  PubMed  Google Scholar 

  • Anon (1986) A list of plant diseases, insect pests and weeds in Korea, The Korean Society of plant protection, Suwon, Republic of Korea, 285 pp

    Google Scholar 

  • Arthropod Pesticide Resistance Database http://www.pesticideresistance.org/DB

  • Ashley MV, Laipis PJ, Hauswirth WW (1989) Rapid segregation of heteroplasmic bovine mitochondria. Nucl Acids Res 17: 7325–7331

    Article  CAS  PubMed  Google Scholar 

  • Ay R, Gurkan MO (2005) Resistance to bifenthrin and resistance mechanisms of different strains of the two-spotted spider mite (Tetranychus urticae) from Turkey. Phytoparasitica 33: 237–244

    Article  CAS  Google Scholar 

  • Baker RT (1985) Resistance of two-spotted mite, Tetranychus urticae Koch (Acari: Tetranychidae), to dicofol in New Zealand-a note. NZ J Exp Agric 13: 101–102

    Google Scholar 

  • Bale JS, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Phil Trans Roy Soc B 363: 761–776

    Article  CAS  Google Scholar 

  • Ballantyne GH, Harrison RA (1967) Genetic and biochemical comparisons of organophosphate resistance between strains of spider mites (Tetranychus species: Acari). Entomol Exp Appl 10: 231–239

    Article  CAS  Google Scholar 

  • Beers EH, Riedl H, Dunley JE (1998) Resistance to abamectin and reversion to susceptibility to fenbutatin oxide in spider mite (Acari: Tetranychidae) populations in the Pacific Northwest. J Econ Entomol 91: 352–360

    Google Scholar 

  • Benting J, Nauen R (2004) Biochemical evidence that an S431F mutation in acetylcholinesterase-1 of Aphis gossypii mediates resistance to pirimicarb and omethoate. Pest Manage Sci 60: 1051–1055

    Article  CAS  Google Scholar 

  • Black BC, Hollingworth RM, Ahammadsahib KI, Kukel CD, Donovan S (1994) Insecticidal action and mitochondrial uncoupling activity of AC303,630 and related halogenated pyrroles. Pestic Biochem Physiol 50: 115–128

    Article  CAS  Google Scholar 

  • Black WC, Vontas J (2007) Affordable assays for genotyping single nucleotide polymorphism in insects. Insect Mol Biol 16: 377–387

    Article  CAS  PubMed  Google Scholar 

  • Blackhall W, Pouliot J-F, Prichard R, Beech R (1998) Haemonchus contortus: selection at a glutamate-gated chloride channel gene in ivermectin- and imoxidectin-selected strains. Exp Parasitol 90: 42–48

    Article  CAS  PubMed  Google Scholar 

  • Bloomquist JR (1993) Toxicology, mode of action, and target-site mediated resistance to insecticides acting on chloride channels. Comp Biochem Physiol 106C: 301–314

    CAS  Google Scholar 

  • Bloomquist JR (1996) Ion channels as targets for insecticides. Annu Rev Entomol 41: 163–190

    Article  CAS  PubMed  Google Scholar 

  • Bloomquist JR (2000) GABA and glutamate receptors as biochemical sites for insecticide action. In: Ishaaya I (ed) Biochemical sites of insecticide action and resistance. Springer-Verlag, Berlin/Heidelberg/New York, pp. 17–41

    Google Scholar 

  • Bretschneider T, Fischer R, Nauen R (2007) Inhibitors of lipid synthesis (acetyl-CoA-carboxylase inhibitors). In: Krämer W, Schirmer U (eds) Modern crop protection compounds. Wiley-VCH Verlag GmbH & Co, Weinheim, pp 909–925

    Google Scholar 

  • Brandt U, Schägger H, van Jagow G (1991) Significance of the “Rieske” iron sulphur protein for formation and function of the ubiquinol oxidation pocket of mitochondrial cytochrome c reductase (bc1 complex). J Biol Chem 266: 19958–19964

    CAS  PubMed  Google Scholar 

  • Brun LO, Edge VE, Gutierrez J (1983) The occurrence of 5 Tetranychus spp. (Acari: Tetranychidae) in New Caledonia and their responses to acaricides. Trop Pest Man 29: 371–377

    CAS  Google Scholar 

  • Bylemans D, Meurrens F (1997) Anti-resistance strategies for the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), in strawberry culture. Acta Hortic 439: 869–876

    CAS  Google Scholar 

  • Bynum ED, Archer TL, Plapp FW (1997) Comparison of Banks grass mite and twospotted spider mite (Acari: Tetranychidae): Responses to insecticides alone and in synergistic combinations. J Econ Entomol 90: 1125–1130

    CAS  Google Scholar 

  • Campos F, Dybas RD, Krupa DA (1995) Susceptibility of twospotted spider mite (Acari: Tetranychidae) populations in California to abamectin. J Econ Entomol 88: 225–231

    CAS  Google Scholar 

  • Campos F, Krupa DA, Dubas RA (1996) Susceptibility of populations of twospotted spider mites (Acari: Tetranychidae) from Florida, Holland and the Canary Island to Abamectin and characterization of abamectin resistance. J Econ Entomol 89: 594–601

    CAS  Google Scholar 

  • Carbonaro MA, Moreland DE, Edge VE, Motoyoma N, Rock GC, Dauterman WC (1986) Studies on the mechanism of cyhexatin resistance in the 2-spotted spider-mite, Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 79: 576–579

    CAS  PubMed  Google Scholar 

  • Chapman RD, Penman DR (1979) Negatively correlated cross-resistance to a synthetic pyrethroid in organophosphorus-resistant Tetranychus urticae Nature 281: 298–299

    Article  CAS  Google Scholar 

  • Cho JR, Kim YJ, Ahn YJ, Yoo JK, Lee JO (1995) Monitoring of acaricide resistance in field collected populations of Tetranychus urticae (Acari: Tetranychidae) in Korea. Korean J Appl Entomol 31: 40–45

    Google Scholar 

  • Clark JM, Scott JG, Campos F, Bloomquist JR (1995) Resistance to avermectins-extent, mechanisms, and management implications. Annu Rev Entomol 40: 1–30

    Article  CAS  PubMed  Google Scholar 

  • Cranham JE, Helle W (1985) Pesticide resistance in Tetranychidae. In: Helle W, Sabelis MW (eds) Spider mites, their biology, natural enemies and control, volume 1B. Elsevier, Amsterdam, 458 p

    Google Scholar 

  • Cranham JE (1974) Resistance to organophosphates in red spider mite, Tetranychus urticae from English hop gardens. Ann Appl Biol 78: 99–111

    Article  CAS  Google Scholar 

  • Croft BA, Miller RW, Nelson RD, Westigard PH (1984) Inheritance of early-stage resistance to formetanate and cyhexatin in Tetranychus urticae Koch (Acarina, Tetranychidae). J Econ Entomol 77: 574–578

    CAS  Google Scholar 

  • Daborn P, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, Tijet N, Perry T, Heckel D, Batterham P, Feyereisen R, Wilson TG, ffrench-Constant RH (2002) A single p450 allele associated with insecticide resistance in Drosophila. Science 297: 2253–2256

    Article  CAS  PubMed  Google Scholar 

  • Darrouzet E, Dupuis A (1997) Genetic evidence for the existance of two quinone related inhibitor binding sites in NADH-CoQ reductase. Biochim Biophys acta 1319: 1–4

    Article  CAS  PubMed  Google Scholar 

  • Davies TGE, Field LM, Usherwood PNR, Williamson MS (2007) DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB-Life 59: 151–162

    Article  CAS  PubMed  Google Scholar 

  • Davies TGE, O’Reilly A, Field LM, Wallace BA, Williamson MS (2008) Knockdown resistance to DDT and pyrethroids: from target-site mutations to molecular modeling. Pest Manage Sci 64: 1126–1130

    Article  CAS  Google Scholar 

  • Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys acta 1364: 222–235

    Article  CAS  PubMed  Google Scholar 

  • Dekeyser M (1996) D2341 – A novel agent to control spider mites. Proceedings of the BCP Conference, Pests and Diseases 3: 487–492

    Google Scholar 

  • Dekeyser M (2005) Acaricide mode of action. Pest Manage Sci 61: 103–110

    Article  CAS  Google Scholar 

  • Dennehy TJ, Granett J (1984) Spider mite resistance to dicofol in San Joaquin Valley cotton: inter- and intraspecific variability in susceptibility of three species of Tetranychus (Acari: Tetranychidae). J Econ Entomol 77: 1381–1385

    CAS  Google Scholar 

  • Devine GJ, Barber M, Denholm I (2001) Incidence and inheritance of resistance to METI-acaricides in European strains of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Manage Sci 57: 443–448

    Article  CAS  Google Scholar 

  • Devonshire AL, Field LM (1991) Gene amplification and insecticide resistance. Annu Rev Entomol 36: 1–23

    Article  CAS  PubMed  Google Scholar 

  • Devorshak C, Roe RM (1998) The role of esterases in insecticide resistance. Rev Toxicol 2: 501–537

    CAS  Google Scholar 

  • Edge VE, James DG (1982) Detection of cyhexatin resistance in twospotted mite, Tetranychus urticae Koch (Acarina, Tetranychidae) in Australia. J Austr Entomol Soc 21: 198–198

    Article  Google Scholar 

  • Edge VE, James DG (1986) Organotin resistance in Tetranychus urticae (Acari: Tetranychidae) in Australia. J Econ Entomol 79: 1477–1483

    CAS  Google Scholar 

  • Esser L, Quinn B, Li YF, Zhang M, Elberry M, Yu L, Yu CA, Xia D (2004) Crystallographic studies of quinol oxidation site inhibitors: A modified classification of inhibitors for the cytochrome bc(1) complex. J Mol Biol 341: 281–302

    Article  CAS  PubMed  Google Scholar 

  • Evans OE (1992) Principles of acarology. CABI, Wallingford UK, 565 p

    Google Scholar 

  • Farnham AW, Dennehy TJ, Denholm I, White JC (1992) The microimmersion bioassay: a novel method for measuring acaricidal activity and for characterizing resistance in spider mites. Brighton Crop Protection Conference – Pest and diseases 1992. The British Crop Protection Council, Rarnham, Surrey, UK 1: 257–262

    Google Scholar 

  • Fergusson-Kolmes L, Scott JG, Dennehy TJ (1991) Dicofol resistance in Tetranychus urticae (Acari: Tetranychidae): Cross-resistance and pharmacokinetics. J Econ Entomol 84: 41–48

    CAS  Google Scholar 

  • Feyereisen R (1995) Molecular biology of insecticide resistance. Toxicology letters 82/83: 83–90

    Article  CAS  Google Scholar 

  • Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44: 507–533

    Article  CAS  PubMed  Google Scholar 

  • ffrench-Constant RH (1994) The molecular and population genetics of cyclodiene insecticide resistance. Insect Biochem Mol Biol 24: 335–345

    Article  CAS  PubMed  Google Scholar 

  • Field LM, Devonshire AL, Forde BG (1988) Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem J 251: 309–312

    CAS  PubMed  Google Scholar 

  • Flexner JL (1988) Organotin resistance in Tetranychus urticae Koch on pear: components and their integration for resitance management. Ph.D. dissertation, Oregon State University, Corvallis, OR

    Google Scholar 

  • Fournier D, Mutero A (1994) Modification of acetylcholinesterase as a mechanism of resistance to insecticides. Comp Biochem Physiol 108C: 19–31

    CAS  Google Scholar 

  • Fournier D, Mutero A, Pralavorio M, Bride JM (1993) Drosophila acetylcholinesterase: mechanisms of resistance to organophosphates. Chem Biol Interact 87: 233–238

    Article  CAS  PubMed  Google Scholar 

  • Fritz LC, Wang CC, Gorio A (1979) Avermectin B1A irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance. Proc Natl Acad Sci USA 76: 2062–2066

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Wen X, Yu C, Esser L, Tsao S, Quinn B, Zhang B, Yu L, Xia D (2002) The crystal structure of the mitochondrial cytochrome bc1 complex with famoxadone: the role of aromatic-aromatic interaction in inhibition. Biochemistry 41: 11692–11702

    Article  CAS  PubMed  Google Scholar 

  • Georghiou GP (1990) Overview of insecticide resistance. ACS Symp Ser 421: 18–41

    Article  CAS  Google Scholar 

  • Georghiou GP, Lagunes-Tejeda A (1991) The occurrence of resistance to pesticides in arthropods: an index of cases reported through 1989. Food and Agricultural Organisation of the United Nations, Rome, Italy

    Google Scholar 

  • Giessler A, Geier BM, Derago JP, Slonimski PP, Vonjagow G (1994) Analysis of cytochrome-b amino acide residues forming the contact face with the iron-sulfur subunit of ubiquinol : cytochrome-c reductase in Saccharomyces cerevisiae. Eur J Biochem 222: 147–154

    Article  CAS  PubMed  Google Scholar 

  • Gisi U, Sierotzki H, Cook A, McCaffery A (2002) Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Manage Sci 58: 859–867

    Article  CAS  Google Scholar 

  • Goka K (1998) Mode of inheritance of resistance to three new acaricides in the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). Exp Appl Acarol 22: 699–708

    Article  CAS  Google Scholar 

  • Grosscurt A, Avella L (2005) Bifenazate, a new acaricides for use on ornamentals in Europe and Asia. Proceedings of the BCP Conference, Crop Science and Technology, pp. 49–56

    Google Scholar 

  • Hatano R, Scott JG, Dennehy TJ (1992) Enhanced activation is the mechanism of negative cross-resistance to chlorpyrifos in the dicofol-IR strain of Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 85: 1088–1091

    CAS  PubMed  Google Scholar 

  • He HQ, Chen AC, Davey RB, Ivie GW, George JE (1999) Identification of a point mutation in the para-type sodium channel gene from a pyrethroid-resistant cattle-tick. Biochem Biophys Res Comm 261: 558–561

    Article  CAS  PubMed  Google Scholar 

  • Helle W (1961) Multi resistance in the two spotted spider mite at Aalsmeer. T. Pl.-Ziekten 67: 28–31

    CAS  Google Scholar 

  • Helle W (1962) Genetics of resistance to organophosphorus compounds and its relation to diapause in Tetranychus urticae Koch (Acari). T. Pl.-Ziekten 63: 155–195

    Google Scholar 

  • Helle W (1984) Aspects of pesticide resistance in mites. In: Griffiths DA, Bowman CE (eds) Acarology VI, Vol. 1. Ellis Horwood, Chichester, pp. 122–131

    Google Scholar 

  • Helle W (1985) Genetics. In: Helle W, Sabelis MW (eds). Spider mites, their biology, natural enemies and control. Vol. 1A. Elsevier, Amsterdam, 405 p

    Google Scholar 

  • Helle W, Sabelis MW (1985) Spider Mites, their biology, natural enemies and control. Vol. 1A Elsevier, Amsterdam, 405 p

    Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Ann Rev Entomol 45: 371–391

    Article  CAS  Google Scholar 

  • Hemingway J, Hawkes N, Prapanthadara L, Jawardenal KGI, Ranson H (1998) The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. Phil Trans R Soc Lond 353: 1695–1699

    Article  CAS  Google Scholar 

  • Herron GA (1994) Clofentezine-Hexythiazox resistance in two-spotted mite Tetranychus urticae Koch (Acari: Tetranychidae) in Australia. Ph.D. thesis, University of Sydney

    Google Scholar 

  • Herron GA, Rophail J (1998) Tebufenpyrad (Pyranica(R)) resistance detected in two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) from apples in western Australia. Exp Appl Acarol 22: 633–641

    Article  CAS  Google Scholar 

  • Herron GA, Rophail J (2003) First detection of chlorfenapyr (Secure®) resistance in two-spotted spider mite (Acari: Tetranychidae) from nectarines in an Australian orchard. Exp Appl Acarol 31: 131–134

    Article  CAS  PubMed  Google Scholar 

  • Herron GA, Edge V, Rophail J (1993) Clofentezine and hexythiazox resistance in Tetranychus urticae Koch in Australia. Exp Appl Acarol 17: 433–440

    Article  CAS  Google Scholar 

  • Herron GA, Learmonth SE, Rophail J, Barchia I (1997) Clofentezine and fenbutatin oxide resistance in the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) from deciduous fruit tree orchards in Western Australia. Exp Appl Acarol 21: 163–169

    Article  CAS  Google Scholar 

  • Herron GA, Edge VE, Wilson LJ, Rophail J (1998) Organophosphate resistance in spider mites (Acari: Tetranychidae) from cotton in Australia. Exp Appl Acarol 22: 17–30

    Article  CAS  Google Scholar 

  • Herron GA, Rophail J, Wilson LJ (2001) The development of bifenthrin resistance in two-spotted spider mite (Acari: Tetranychidae) from Australian cotton Exp Appl Acar 25: 301–310

    Article  CAS  Google Scholar 

  • Herron GA, Rophail J, Wilson LJ (2004) Chlorfenapyr resistance in two-spotted spider mite (Acari: Tetranychidae) from Australian cotton. Exp Appl Acarol 34: 315–321

    CAS  PubMed  Google Scholar 

  • Hirata KY, Kawamura Y, Kudo M, Igarasgi H (1995) Development of a new acaricides, pyridaben. J Pest Sci 20: 177–179

    CAS  Google Scholar 

  • Hollingworth RM, Ahammadsahib KI (1995) Inhibitors of respiratory complex I: mechanisms, pesticidal actions and toxicology. Rev. Pestic Toxicol 3: 277–302

    CAS  Google Scholar 

  • Hoy MA, Knop NF, Joos JL (1980) Pyrethroid resistance persists in spider mite predator. Calif Agric 34: 11–12

    Google Scholar 

  • Hussey NW, Read WH, Hesling JJ (1969) The pests of protected cultivation, Edward Arnold, London, 404 p

    Google Scholar 

  • Hyde JE (2007) Drug-resistant malaria – an insight. FEBS J 247: 4688–4698

    Article  CAS  Google Scholar 

  • Jacobson RJ, Croft P, Fenlon J (1999) Response to fenbutatin oxide in populations of Tetranychus urticae Koch (Acari: Tetranychidae) in UK protected crops. Crop Prot 18: 47–52

    Article  CAS  Google Scholar 

  • Jansson RK, Dybas RA (1997) Avermectins: Biochemical mode of action, biological activity and agricultural importance. In: Ishaaya I (ed) Insecticides with novel modes of action. Springer-Verlag, Berlin/Heidelberg/New York, pp. 152–170

    Google Scholar 

  • Jenuth JP, Peterson AC, Fu K, Shoubridge EA (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14: 146–151

    Article  CAS  PubMed  Google Scholar 

  • Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants, University of Carolina Press, Berkeley, CA, 614 pp

    Google Scholar 

  • Khajehali J, Van Leeuwen T, Alout H, Morou E, Weill M, Vontas J, Tsagkarakou A (2009) Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates. Pest Manage Sci (Submitted)

    Google Scholar 

  • Kashani-Poor N, Zwicker K, Kerscher S, Brandt U (2001) A central functional role for the 49 kDa subunit within the catalytic core of mitochondrial complex I. J Biol Chem 276: 24082–24087

    Article  CAS  PubMed  Google Scholar 

  • Keena MA, Granett J (1990) Genetic analysis of propargite resistance in Pacific spider mite mites and twospotted spider mites (Acari: Tetranychidae). J Econ Entomol 83: 655–661

    Google Scholar 

  • Kessl JJ, Lange BB, Merbitz-Zahradnik T, Zwicker K, Hill P, Meurnier B, Palsdottir H, Hunte C, Meshnik S, Trumpower BL (2003) Molecular basis for atovaquone binding to the cytochrome bc1 complex. J Biol Chem 278: 31312–31318

    Article  CAS  PubMed  Google Scholar 

  • Khambay B, Jewess P (2006) Pyrethroids. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol. 6. Elsevier, Oxford, pp. 1–29

    Chapter  Google Scholar 

  • Kim H, Xia D, Yu CA, Xia JZ, Kachurin AM, Zhang L, Yu L, Deisenhofer J (1998) Inhibitor binding changes domain mobility in the iron-sulfur protein of the mitochondrial bc1 complex form bovine heart. Proc Natl Acad Sci USA 95: 8026–8033

    Article  CAS  PubMed  Google Scholar 

  • Kim GH, Song C, Park NJ, Cho KY (1994) Inheritance of resistance in dicofol-selected strain of the two-spotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae), and its cross resistance. Kor J Appl Entomol 33: 230–236

    Google Scholar 

  • Kim YJ, Lee SH, Lee SW, Ahn YJ (2004) Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms. Pest Manage Sci 60: 1001–1006

    Article  CAS  Google Scholar 

  • Kim YJ, Park HM, Cho JR, Ahn YJ (2006) Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 99: 954–958

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S, Koura Y, Kariya H, Ohsaki N, Watanabe T (1999) AKD-2023: a novel miticide. Biological activity and mode of action. Pestic Sci 55: 659–660

    CAS  Google Scholar 

  • Knowles CO (1997) Mechanisms of resistance to acaricides. In: Sjut V (ed) Molecular mechanisms of resistance to agrochemicals. Springer, New York, 161 p

    Google Scholar 

  • Kobayashi M, Kobayashi S, Nishimori T (2001) Occurrence of etoxazole resistance individuals of the two-spotted spider mite, Tetranychus urticae Koch from a limited region. Japanese Journal of Applied Entomology and Zoology 45: 83–88 (In Japanese)

    Article  Google Scholar 

  • Kolmes SA, Dennehy TJ, Sam Y (1994) Contrasting behavior of twospotted spider mites (Acari: Tetranychidae) on discontinuous residues of a pyrethroid and a chlorinated hydrocarbon acaricide. J Econ Entomol 87: 559–565

    CAS  Google Scholar 

  • Konno T, Kuriyama K, Hamaguchi H, Kujihara O (1990) Fenpyroximate (NNI-850) a new acaricide. Proceedings of the BCP Conference-Pests and Diseases, pp. 71–78

    Google Scholar 

  • Kono S (1985) Susceptibility of dicofol resistant 2-spotted spider-mite, Tetranychus urticae Koch, against various pesticides and their control effects. Jap J Appl Entomol Zool 29: 150–157

    Google Scholar 

  • Kozaki T, Shono T, Tomita T, Kono Y (2001) Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations. Insect Biochem Mol Biol 31: 991–997

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara M (1982) Insensitivity of the acetylcholinesterase from the organophosphate-resistant Kanzawa spider mite, Tetranychus kanzawai Kishida (Acarina: Tetranychidae), to organophosphorus and carbamate insecticides. Appl Entomol Zool 17: 486–493

    CAS  Google Scholar 

  • Kyomura N, Fukuchi T, Kohyama Y, Motojima S (1990) Biological characteristics of new acaricides MK-239. Proceedings of the BCP Conference-Pests and Diseases, pp. 55–62

    Google Scholar 

  • Legros F, Malka F, Frachon P, Lombes A, Roja M (2004) Organization and dynamics of human mitochondrial DNA. J Cell Sci 117: 2653–2662

    Article  CAS  PubMed  Google Scholar 

  • Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52: 231–253

    Article  PubMed  CAS  Google Scholar 

  • Longhurst C, Bacci L, Buendia J, Hatton CJ, Petitprez J, Tsakonas P (1992) Fenazaquin, a novel acaricides for the management of spider mites in a variety of crops. Proceedings of the BCP Conference-Pests and Diseases, pp. 51–58

    Google Scholar 

  • Lümmen P (1998) Complex I inhibitors as insecticides and acaricides. Biochim Biophys Acta 1364: 287–296

    Article  PubMed  Google Scholar 

  • Lümmen P (2007) Mitochondrial electron transport complexes as biochemical target sites for insecticides and acaricides. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Martinson TE, Dennehey TJ, Nyrop JP, Reissig WH (1991) Field-measurements of selection for 2-spotted spider-mite (Acari: Tetranychidae) resistance to dicofol in apple orchards. J Econ Entomol 84: 7–16

    Google Scholar 

  • McCaffery A, Nauen R (2006) The insecticide resistance action committee (IRAC): Public responsibility and enlightened industrial self-interest. Outlooks Pest Manage 17: 11–14

    Google Scholar 

  • Menozzi P, Shi MA, Lougarre A, Tang ZH and Fournier D (2004) Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations, BMC Evol Biol 4: 4

    Article  PubMed  Google Scholar 

  • Metcalf RL (1980) Changing role of insecticides in crop protection. Annu Rev of Entomol 25: 219–256

    Article  CAS  Google Scholar 

  • McKenzie JA, Batterham P (1998) Predicting insecticide resistance: mutagenesis, selection and response. Phil Trans R Soc Lond B 353: 1729–1734

    Article  CAS  Google Scholar 

  • Motoba K, Nishizawa H, Suzuki T, Hamaguchi H, Uchida M, Funayama S (2000) Species-specific detoxification metabolism of fenpyroximate, a potent acaricide. Pest Biochem Physiol 67: 73–84

    Article  CAS  Google Scholar 

  • Mutero AM, Pralavorio M, Bride JM, Fournier D (1994) Resistance associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci USA 91: 5922–5926

    Article  CAS  PubMed  Google Scholar 

  • Nabeshima T, Kozaki T, Tomita T, Kono Y (2003) An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae. Biochem Biophys Res Commun 307: 15–22

    Article  CAS  PubMed  Google Scholar 

  • Nabeshima T, Mori A, Kozaki T, Iwata Y, Hidoh O, Harada S, Kasai S, Severson DW, Kono Y, Tomita T (2004) An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus. Biochem Biophys Res Commun 313: 794–801

    Article  CAS  PubMed  Google Scholar 

  • Nauen R (2005) Spirodiclofen: mode of action and resistance risk assessment in Tetranychid pest mites. J Pestic Sci 30: 272–274

    CAS  Google Scholar 

  • Nauen R, Stumpf N, Elbert A, Zebitz CPW, Kraus W (2001) Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Manage Sci 57: 253–261

    Article  CAS  Google Scholar 

  • O’Reilly AO, Khambay BPS, Williamson MS, Field LM, Wallace BA, Davies TGE (2006) Modelling insecticide binding sites in the voltage-gated sodium channel. Biochem J 396: 255–263

    Article  PubMed  Google Scholar 

  • Ochiai N, Mizuno M, Mimori N, Miyake T, Dekeyser M, Canlas LJ, Takeda M (2007) Toxicity of bifenazate and its principal active metabolite, diazene, to Tetranychus urticae and Panonychus ulmi and their relative toxicity to the predaceous mites Phytoseiulus persimilis and Neoseiulus californicus. Exp Appl Acarol 43: 181–197

    Article  CAS  PubMed  Google Scholar 

  • Oh SH, Kozaki T, Mizuno H, Tomita T, Kono Y (2006) Expression of ace paralogous acetylcholinesterase of Culex tritaeniorhynchus with an amino acid substitution conferring insecticide insensitivity in baculovirus-insect cell system. Pest Biochem Physiol 85: 46–51

    Article  CAS  Google Scholar 

  • Okun JG, Lümmen P, Brandt U (1999) Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:Ubiquinone Oxidoreductase). J Biol Chem 274: 2625–2630

    Article  CAS  PubMed  Google Scholar 

  • Oppenoorth FJ (1984) Biochemistry of insecticide resistance. Pest Biochem Physiol 22: 187–193

    Article  CAS  Google Scholar 

  • Oppenoorth FJ (1985) Biochemistry and genetics of insecticide resistance. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Insect control. Pergamon Press, Oxford, pp. 731–773

    Google Scholar 

  • Palsdottir H, Lojero CG, Trumpower BL, Hunte C (2003) Structure of the yeast cytochrome bc1complex with a hydroxyquinone anion Qo site inhibitor bound. J Biol Chem 278: 31303–31311

    Article  CAS  PubMed  Google Scholar 

  • Park CG, Lee SG, Choi BR, Yoo JK, Lee JO (1996) Inheritance of tetradifon resistance in two-spotted spider mite (Acari: Tetranychidae) and its cross resistance. Kor J App Entomol 35: 260–265

    Google Scholar 

  • Pickett CB, Lu YH (1989) Glutathione S-transferases: gene structure, regulation and biological function. Annu Rev Biochem 58: 743–764

    Article  CAS  PubMed  Google Scholar 

  • Prapanthadara L, Hemingway J, Ketteran AJ (1993) Partial purification and characterization of glutathione S-transferase involved in DTT resistance from the mosquito Anopheles gambiae. Pest Biochem Physiol 47: 119–133

    Article  CAS  Google Scholar 

  • Rauch N, Nauen R (2002) Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): a biochemical approach. Pest Biochem Physiol 74: 91–101

    Article  CAS  Google Scholar 

  • Roush RT, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32: 361–380

    Article  CAS  PubMed  Google Scholar 

  • Roush RT, Tabashnik B (1990) Pesticide resistance in arthropods. Chapman & Hall, New York, 303 p

    Google Scholar 

  • Sato ME, Miyata T, Da Silva M, Raga A, De Souza Filho MF (2004) Selections for fenpyroximate resistance and susceptibility, and inheritance, cross-resistance and stability of fenpyroximate resistance in Tetranychus urticae Koch (Acari: Tetranychidae). Appl Entomol Zool 39: 293–302

    Article  CAS  Google Scholar 

  • Sato ME, Da Silva MZ, Raga A, De Souza Filho MF (2005) Abamectin resistance in Tetranychus urticae Koch (Acari:Tetranychidae): Selection, cross-resistance and stability of resistance. Neotropical Entomology 34: 991–998

    Article  CAS  Google Scholar 

  • Schuler F, Casida JE (2001) The insecticide target in the PSST subunit of complex I. Pest Manage Sci 57: 932–940

    Article  CAS  Google Scholar 

  • Schulten GGM (1968) Genetics of organophosphate resistance in the two-spotted spider mite (Tetranychus urticae Koch). Ph.D., The Royal Tropical Institute, Amsterdam, The Netherlands

    Google Scholar 

  • Scott J (1995) Resistance to avermectins in the house fly, Musca domestica. In: Clark JM (ed) Molecular action of insecticides on ion channels. ACS Symposium Series 591. American Chemical Society, Washinton, DC, pp. 284–292

    Chapter  Google Scholar 

  • Shoop W, Mrozik H, Fisher M (1995) Structure and activity of avermectins and milbemycins in animal health. Vet Parasitol 59: 139–156

    Article  CAS  PubMed  Google Scholar 

  • Smissaert HR (1964) Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science 143: 129–131

    Article  CAS  PubMed  Google Scholar 

  • Smissaert HR, Voerman S, Oostenbrugge L, Renooy N (1970) Acetylcholinesterases of organophosphate-susceptible and -resistant spider mites. J Agr Food Chem 18: 66–75

    Article  CAS  Google Scholar 

  • Smissaert HR, Abd El Hamid FM, Overmeer WPJ (1975) The minimum acetylcholinesterase (AChE) fraction compatible with life derived by aid of a simple model explaining the degree of dominance of resistance to inhibitors in AChE “mutants”. Biochem Pharmacol 24: 1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Soderlund DM, Bloomquist JR (1989) Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol 34: 77–96

    Article  CAS  PubMed  Google Scholar 

  • Soderlund DM, Knipple DC (2003) The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33: 563–577

    Article  CAS  Google Scholar 

  • Soderlund DM (2005) Sodium channels. In Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol. 5. Elsevier, Oxford, pp. 1–24

    Chapter  Google Scholar 

  • Sogorb MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroïd insecticides through hydrolysis. Toxicol Lett 128: 215–228

    Article  CAS  PubMed  Google Scholar 

  • Solignac M, Génermont J, Monnerot M, Mounolou J-C (1984) Genetics of mitochondria in Drosophila: mtDNA inheritance in heteroplasmic strains of D. mauritiana. Mol Gen Genet 197: 183–188

    Article  CAS  Google Scholar 

  • Stumpf N, Nauen R (2001) Cross-resistance, inheritance and biochemistry of METI-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 94: 1577–158

    Article  CAS  PubMed  Google Scholar 

  • Stumpf N, Nauen R (2002) Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pest Biochem Physiol 72: 111–121

    Article  CAS  Google Scholar 

  • Stumpf N, Zebitz CPW, Kraus W, Moores G, Nauen R (2001) Resistance to organophosphates and biochemical genotyping of acetylcholinesterases in Tetranychus urticae (Acari: Tetranychidae). Pest Biochem Physiol 72: 131–142

    Article  CAS  Google Scholar 

  • Suh E, Koh S-Y, Lee J-H, Shin K-I, Cho K (2006) Evaluation of resistance pattern to fenpyroximate and pyridaben in Tetranychus urticae collected from greenhouses and apple orchards using lethal concentration-slope relationship. Exp Appl Acarol 38: 151–165

    Article  PubMed  Google Scholar 

  • Tag El-Din MH (1990) A rapid detection of organophosphorus resistance with insensitive acetylcholinesterase in spider mites Tetranychus urticae Koch on cotton. J Appl Entomol 110: 416–420

    Article  Google Scholar 

  • Tan JG, Liu ZQ, Wang RW, Huang ZY, Chen AC, Gurevitz M, Dong K (2005) Identification of amino acid residues in the insect sodium channel critical for pyrethroid binding. Mol Pharmacol 67: 513–522

    Article  CAS  PubMed  Google Scholar 

  • Taylor AE, Smith F (1956) Transmission of resistance between strains of two-spotted spider mites. J Econ Entomol 49: 858–859

    Google Scholar 

  • Tian TY, Graftoncardwell EE, Granett J (1992) Resistance of Tetranychus urticae Koch (Acari: Tetranychidae) to cyhexatin and fenbutatin-oxide in California pears. J Econ Entomol 85: 2088–2095

    CAS  Google Scholar 

  • Toda S, Komazaki S, Tomita T, Kono Y (2004). Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae). Insect Mol Biol 13: 549–553

    Article  CAS  PubMed  Google Scholar 

  • Tsagkarakou A, (1997) Structure génétique et mécanismes da la résistance aux insecticides organophosphorés chez Tetranychus urticae Koch (Acari: Tetarnychidae). Ph.D. Thesis, Université Montpellier II

    Google Scholar 

  • Tsagkarakou A, Navajas M, Lagnel J, Gutierrez J, Pasteur N (1996) Genetic variability in Tetranychus urticae from Greece (Acari: Tetranychidae): Insecticide resistance and isozymes. J Econ Entomol 89: 1354–1358

    CAS  Google Scholar 

  • Tsagkarakou A, Navajas M, Lagnel J, Pasteur N (1997) Population structure in the spider mite Tetranychus urticae (Acari: Tetranychidae) from Crete based on multiple allozymes. Heredity 78: 84–92

    Article  CAS  PubMed  Google Scholar 

  • Tsagkarakou A, Navajas M, Papaioannou-Souliotis P, Pasteur N (1998). Gene flow among Tetranychus urticae (Acari: Tetranychidae) populations in Greece. Molecular Ecology 7: 71–79

    Article  CAS  Google Scholar 

  • Tsagkarakou A, Navajas M, Rousset F, Pasteur N (1999) Genetic differentiation in Tetranychus urticae from greenhouses in France. Exp Appl Acarol 23: 365–378

    Article  Google Scholar 

  • Tsagkarakou A, Navajas M, Cuany A, Chevillon C, Pasteur N (2002) Mechanisms of resistance to organophosphates in Tetranychus urticae (Acari: Tetranychidae) from Greece. Insect Biochem Mol Biol 32: 417–24

    Article  CAS  PubMed  Google Scholar 

  • Tsagkarakou A, Van Leeuwen T, Khajehali J, Ilias A, Grispou M, Williamson MS, Tirry L, Vontas J (2009) Identification of pyrethroid resistance mutations in the para sodium channel of the two-spotted spider mite Tetranychus urticae (Acari:Tetranychidae) Insect Mol Biol (Submitted)

    Google Scholar 

  • Uesugi R, Goka K, Osakabe MH (2002) Genetic basis of resistance to chlorfenapyr and etoxazole in the two-spotted spider mite (Acari: Tetranychidae). J Econ Entomol 95: 1267–1274

    Article  CAS  PubMed  Google Scholar 

  • Van Leeuwen T, Tirry L (2007) Esterase-mediated bifenthrin resistance in a multiresistant strain of the two-spotted spider mite, Tetranychus urticae. Pest Manage Sci 63: 150–156

    Article  CAS  Google Scholar 

  • Van Leeuwen T, Stillatus V, Tirry L (2004) Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: Tetranychidae). Exp Appl Acarol 32: 249–261

    Article  CAS  PubMed  Google Scholar 

  • Van Leeuwen T, Van Pottelberge S, Tirry L (2005) Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae. Pest Manage Sci 61: 499–507

    Article  CAS  Google Scholar 

  • Van Leeuwen T, Tirry L, Nauen R (2006a) Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. Insect Biochem Mol Biol 36: 839–877

    Article  CAS  Google Scholar 

  • Van Leeuwen T, Van Pottelberge S, Tirry L (2006b) Biochemical analysis of a chlorfenapyr selected strain of Tetranychus urticae. Pest Manage Sci 62: 425–433

    Article  CAS  Google Scholar 

  • Van Leeuwen T, Van Pottelberge S, Nauen R, Tirry L (2007) Organophosphate insecticides and acaricides antagonise bifenazate toxicity through esterase inhibition in Tetranychus urticae. Pest Manage Sci 63: 1172–1177

    Article  CAS  Google Scholar 

  • Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: Non-Mendelian inheritance in action. Proc Natl Acad Sci USA 105: 5980–5985

    Article  CAS  PubMed  Google Scholar 

  • Van Nieuwenhuyse P, Van Leeuwen T, Khajehali J, Vanholme B, Tirry L (2009) Mutations in the mitochondrial cytochrome b of Tetranychus urticae (Acari: Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. Pest Manage Sci 65: 398–403

    Article  CAS  Google Scholar 

  • Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L (2008) Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull Entomol Res 99: 23–31

    Article  PubMed  CAS  Google Scholar 

  • Van Pottelberge S, Van Leeuwen T, Khajehali J, Tirry L (2009a) Genetic and biochemical analysis of a laboratory-selected spirodiclofen-resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae). Pest Manage Sci 65: 358–366

    Article  CAS  Google Scholar 

  • Van Pottelberge S, Khajehali J, Van Leeuwen T, Tirry L (2009b) Effects of spirodiclofen on reproduction in a susceptible and resistant strain of Tetranychus urticae (Acari:Tetranychidae) Exp Appl Acarol 47: 301–309

    Article  PubMed  Google Scholar 

  • Vaz N, Koveos DS, Veerman A (1990) Geographical variation in photoperiodic induction of diapause in the spider mite (Tetranychus urticae): a causal relation between critical nightlength and circadian period. J Biol Rhythms 5: 47–57

    Article  Google Scholar 

  • Vontas JG, Hejazi MJ, Hawkes NJ, Cosmidis N, Loukas M, Janes RW, Hemingway J (2002) Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae. Insect Mol Biol 11: 329–336

    Article  CAS  PubMed  Google Scholar 

  • Voss G, Matsumura F (1964) Resistance to organophosphorus compounds in the two-spotted spider mite: two different mechanisms of resistance. Nature 202: 319–320

    Article  CAS  PubMed  Google Scholar 

  • Wachendorff U, Nauen R, Schnorbach HJ, Rauch N, Elbert A (2002) The biological profile of spirodiclofen (Envidor®) – A new selective tetronic acid acaricide. Pflanzenschutz-Nachrichten Bayer 55: 149–176

    CAS  Google Scholar 

  • Walsh SB, Dolden TA, Moores GD, Kristensen M, Lewis T, Devonshire AL, Williamson MS (2001) Identification and characterisation of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem J 359: 175–181

    Article  CAS  PubMed  Google Scholar 

  • Walter D, Proctor H (eds) (1999) Mites, ecology, evolution and behaviour. CABI, Wallingford, UK, 322 p

    Google Scholar 

  • Weill M, Fort P, Berthomieu A, Dubois MP, Pasteur N, Raymond M (2002) A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila. Proc R Soc Lond Ser B Biol Sci 269: 2007–2016

    Article  CAS  Google Scholar 

  • Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, Pasteur N, Philips A, Fort P, Raymond M (2003) Insecticide resistance in mosquito vectors. Nature 423: 136–137

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Van Leeuwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Tirry, L. (2009). Mechanisms of Acaricide Resistance in the Two-Spotted Spider Mite Tetranychus urticae . In: Ishaaya, I., Horowitz, A. (eds) Biorational Control of Arthropod Pests. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2316-2_14

Download citation

Publish with us

Policies and ethics