Skip to main content
Log in

Defensin (TvD1) from Tephrosia villosa exhibited strong anti-insect and anti-fungal activities in transgenic tobacco plants

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Plant defensin is a small, cationic, cysteine-rich broad-spectrum antimicrobial peptide with four or five disulfide bridges and has been shown to be a component of the innate immunity system in plants. In the present study, the defensin gene (TvD1) from Tephrosia villosa was overexpressed in tobacco and characterized. Two high-expression (T1, T26) and one low-expression (T13) plant lines were selected through semi-quantitative RT-PCR and used for bioassays along with non-transgenic controls. The high-expression plant line exhibited strong in vivo anti-fungal and anti-feedant activity against the pathogen Rhizoctonia solani and the first and second instar larvae of the Spodoptera litura (F.), the tobacco cutworm, respectively. The low-expression plant line showed a moderate level of tolerance/resistance in the bioassays. The recombinant peptide (rTvD1) exhibited toxicity to tobacco pollen grains in the germination assay, but transgenic plants produced copious fertile pollen and set capsules with viable seeds. The results of this study demonstrate that the single gene (TvD1) effectively controls both fungal and insect pests and, hence, it can be used for crop transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdalla NA, Shah DM, Abbas D, Madkour M (2011) Stable integration and expression of a plant defensin in tomato confers resistance to Fusarium wilt. GM Crops 1:344–350

    Article  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier, London

    Google Scholar 

  • Allen A, Snyder AK, Preuss M, Nielsen EE, Shah DM, Smith TJ (2008) Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. Planta 227:331–339

    Article  PubMed  CAS  Google Scholar 

  • Amien S, Kliwer I, Ma′rton ML, Debener T, Geiger D, Becker D, Dresselhaus T (2010) Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol 8:e1000388

    Article  PubMed  Google Scholar 

  • Anderson NA (1982) The genetics and pathology of Rhizoctonia solani. Annu Rev Phytopathol 20:329–347

    Article  Google Scholar 

  • Beer AD, Vivier MA (2008) Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. BMC Plant Biol 8:75

    Article  PubMed  Google Scholar 

  • Bonman JM, Mackill DJ (1988) Durable resistance to rice blast disease. Oryza 25:103–110

    Google Scholar 

  • Broekaert WF, Terras FRG, Cammune BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides components of the host defense systems. Plant Physiol 108:1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Castro MS, Fontes W (2005) Plant defense and antimicrobial peptides. Protein Pept Lett 12:11–16

    Article  Google Scholar 

  • Chari MS, Patel NG (1983) Cotton leaf worm Spodoptera litura (Fabr.): its biology and integrated control measures. Cotton Develop 13:7–8

    Google Scholar 

  • Chen MS (2008) Inducible direct plant defense against insect herbivores: a review. Insect Sci 15:101–114

    Article  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16:664–668

    PubMed  CAS  Google Scholar 

  • Choi MS, Yul-Ho Kim YH, Hyang-Mi Park HM, Bo-Yoon Seo BY, Jin-Kyo Jung JK, Sun-Tae Kim ST, Min-Chul Kim MC, Dong-Bum Shin DB, Hong-Tai Yun HT, Im-Soo Choi IS, Kim CK, Lee JY (2009) Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices. Mol Cells 28:131–137

    Article  PubMed  CAS  Google Scholar 

  • Daniel AH, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Daughtrey ML, Benson M (2005) Principles of plant health management for ornamental plants. Annu Rev Phytopathol 43:141–169

    Article  PubMed  CAS  Google Scholar 

  • De Bolle MFC, Eggermont K, Duncan RE, Osborn RW, Terras FRG, Broekaert WF (1995) Cloning and characterization of two cDNA clones encoding seed-specific antimicrobial peptides from Mirabilis jalapa L. Plant Mol Biol 28:713–721

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissues. Focus 12:13–15

    Google Scholar 

  • Francois IE, De Bolle MF, Dwyer G, Goderis IJ, Woutors PF, Verhaert PD (2002) Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol 128:1346–1358

    Article  PubMed  CAS  Google Scholar 

  • Gao AG, Haikimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang JH, Rommens CMT (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    Article  PubMed  CAS  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS ONE 7(6):e39557

    Article  PubMed  CAS  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  PubMed  CAS  Google Scholar 

  • Jayanthi PDK, Padmavathamma K (2001) Joint action of microbial and chemical insecticides on Spodoptera litura (Fab.) (Lepidoptera:Noctuidae). J Trop Agric 39:142–144

    CAS  Google Scholar 

  • Jha S, Tank HG, Prasad BD, Chattoo BB (2009) Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res 18:59–69

    Article  PubMed  CAS  Google Scholar 

  • Keymanesh K, Soltani S, Sardari S (2009) Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol 25:933–944

    Article  Google Scholar 

  • Khan RS, Masahiro Nishihara M, Yamamura S, Nakamura I, Mii M (2006) Transgenic potatoes expressing wasabi defensin peptide confer partial resistance to gray mold (Botrytis cinerea). Plant Biotechnol 23:179–183

    Article  Google Scholar 

  • Lay FT, Anderson MA (2005) Defensins—components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101

    Article  PubMed  CAS  Google Scholar 

  • Lin KF, Lee TR, Tsai PH, Hsu MP, Chen CS, Lyu PC (2007) Structure-based protein engineering for α-amylase inhibitory activity of plant defensin. Proteins 68:530–540

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Wang Z, Li H, Xia KF, Cai Y, Xu ZF (2009) Overexpression of a weed (Solanum americanum) proteinase inhibitor in transgenic tobacco results in increased glandular trichome density and enhanced resistance to Helicoverpa armigera and Spodoptera litura. Int J Mol Sci 10:1896–1910

    Article  PubMed  CAS  Google Scholar 

  • Meiyalaghan S, Barrell PJ, Jacobs JME, Conner AJ (2011) Regeneration of multiple shoots from transgenic potato events facilitates the recovery of phenotypically normal lines: assessing a cry9Aa2 gene conferring insect resistance. BMC Biotech 11:93

    Article  CAS  Google Scholar 

  • Meyer P (1998) Stabilities and instabilities of transgene expression. In: Lindsay K (ed) Transgenic plant research. Harwood, Amsterdam, pp 263–275

    Google Scholar 

  • Ngai PHK, Ng TB (2005) Phaseococcin, an antifungal protein with antiproliferative and anti-HIV-1 reverse transcriptase activities from small scarlet runner beans. Biochem Cell Biol 83:212–220

    Article  PubMed  CAS  Google Scholar 

  • Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Yui R, Kasahara RD, Hamamura Y, Mizukami A, Susaki D, Kawano N, Sakakibara T, Namiki S, Itoh K, Otsuka K, Matsuzaki M, Nozaki H, Kuroiwa T, Nakano A, Kanaoka MM, Dresselhaus T, Sasaki N, Higashiyama T (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    Article  PubMed  CAS  Google Scholar 

  • Park HC, Kang YH, Chun HJ, Koo JC, Cheong YH, Kim CY, Kim MC, Chung WS, Kim JC, Yoo JH, Koo YD, Koo SC, Lim CO, Lee SY, Cho MJ (2002) Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Mol Biol 50:59–69

    Article  PubMed  CAS  Google Scholar 

  • Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL (2008) Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family. Proteins 73:719–729

    Article  PubMed  CAS  Google Scholar 

  • Punja ZK (2001) Genetic engineering of plants to enhance resistance to fungal pathogens—a review of progress and future prospects. Can J Plant Pathol 23:216–235

    Article  CAS  Google Scholar 

  • Ramakrishnan N, Saxena VS, Dhingra S (1983) Insecticide resistance in the population of Spodoptera litura (Fab.) in Andhra Pradesh. Pesticides 18:23–27

    Google Scholar 

  • Steven CP, Siska EL, Bertness MD (2001) Latitudinal differences in plant palatability in Atlantic coast salt marshes. Ecology 82:1344–1359

    Article  Google Scholar 

  • Stotz HU, Spence B, Wang Y (2009) A defensin from tomato with dual function in defense and development. Plant Mol Biol 71:131–143

    Article  PubMed  CAS  Google Scholar 

  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyeden J, Cammune BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defence. Plant Cell 7:573–588

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defensins. Planta 216:193–202

    Article  PubMed  CAS  Google Scholar 

  • van der Weerden NL, Hancock REW, Anderson MA (2010) Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall dependent process. J Biol Chem 285:37513–37520

    Article  PubMed  Google Scholar 

  • Vandenborre G, Smagghe G, Dammea EJMV (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538–1550

    Article  PubMed  CAS  Google Scholar 

  • Vijayan S, Guruprasad L, Kirti PB (2008) Prokaryotic expression of a constitutively expressed Tephrosia villosa defensin and its potent antifungal activity. Appl Microbiol Biotechnol 80:1023–1032

    Article  PubMed  CAS  Google Scholar 

  • Vijayan S, Imani J, Tanneeru K, Guruprasad L, Kogel KH, Kirti PB (2012) Enhanced antifungal and insect α-amylase inhibitory activities of Alpha-TvD1, a peptide variant of Tephrosia villosa defensin (TvD1) generated through in vitro mutagenesis. Peptides 33:220–229

    Article  PubMed  CAS  Google Scholar 

  • Wang HX, Ng TB (2007) Isolation and characterization of an antifungal peptide with antiproliferative activity from seeds of Phaseolus vulgaris cv. ‘Spotted Bean’. Appl Microbiol Biotechnol 74:125–130

    Article  PubMed  CAS  Google Scholar 

  • Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM (2000) Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci 159:243–255

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wettstein DV, Kannangara CG, Nirmala J, Cook RJ (2006) Growth inhibition of the cereal root pathogens Rhizoctonia solani AG8, R. oryzae and Gaeumanno myces graminis var. tritici by a recombinant 42-kDa endochitinase from Trichoderma harzianum. Biocontrol Sci Technol 16:631–646

    Article  Google Scholar 

  • Zélicourt AD, Letousey P, Thoiron S, Campion C, Simoneau P, Elmorjani K, Marion D, Simier P, Delavault P (2007) Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants. Planta 226:591–600

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

S.V. thank the University Grants Commission, Government of India, for the award of a research fellowship during the tenure of which the investigation was carried out. The authors thank the Head, Department of Plant Sciences, University of Hyderabad for facilities under DST-FIST, UGC-CAS, etc. S.V. thank Dr. T. Ganesan, Department of Botany, Tagore Arts College, Puducherry, India, for providing the fungus R. solani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vijayan.

Additional information

Communicated by Z. Shen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayan, S., Singh, N.K., Shukla, P. et al. Defensin (TvD1) from Tephrosia villosa exhibited strong anti-insect and anti-fungal activities in transgenic tobacco plants. J Pest Sci 86, 337–344 (2013). https://doi.org/10.1007/s10340-012-0467-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-012-0467-5

Keywords

Navigation