Skip to main content
Log in

Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant defensins are small basic peptides of 5–10 kDa and most of them exhibit antifungal activity. In a sunflower resistant to broomrape, among the three defensin encoding cDNA identified, SF18, SD2 and HaDef1, only HaDef1 presented a preferential root expression pattern and was induced upon infection by the root parasitic plant Orobanche cumana. The amino acid sequence deduced from HaDef1 coding sequence was composed of an endoplasmic reticulum signal sequence of 28 amino acids, a standard defensin domain of 50 amino-acid residues and an unusual C-terminal domain of 30 amino acids with a net positive charge. A 5.8 kDa recombinant mature Ha-DEF1 corresponding to the defensin domain was produced in Escherichia coli and was purified by means of a two-step chromatography procedure, Immobilized Metal Affinity Chromatography (IMAC) and Ion Exchange Chromatography. Investigation of in vitro antifungal activity of Ha-DEF1 showed a strong inhibition on Saccharomyces cerevisiae growth linked to a membrane permeabilization, and a morphogenetic activity on Alternaria brassicicola germ tube development, as already reported for some other plant defensins. Bioassays also revealed that Ha-DEF1 rapidly induced browning symptoms at the radicle apex of Orobanche seedlings but not of another parasitic plant, Striga hermonthica, nor of Arabidopsis thaliana. FDA vital staining showed that these browning areas corresponded to dead cells. These results demonstrate for the first time a lethal effect of defensins on plant cells. The potent mode of action of defensin in Orobanche cell death and the possible involvement in sunflower resistance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Dm-AMP1:

Dahlia merckii antimicrobial peptide1

ES-MS:

Electro-spray mass spectrometer

FDA:

Fluorescein diacetate

Ha-DEF1:

Helianthus annuus defensin protein1

IMAC:

Immobilized metal affinity chromatography

Rs-AFP2:

Raphanus sativus antifungal peptide2

RT-PCR:

Reverse transcriptase-polymerase chain reaction

References

  • Aerts AM, François IEJA, Bammens L, Smets B, Winderickx J, Accardo S, De Vos DE,Thevissen K (2006) Level of M(IP)2C sphingolipid affects plant defensin sensitivity, oxidative stress resistance and chronological life-span in yeast. FEBS Lett 580:1903–1907

    Article  PubMed  CAS  Google Scholar 

  • Benharrat H, Boulet C, Theodet C, Thalouarn P (2005) Virulence diversity among branched broomrape (O. ramosa L.) populations in France. Agronomie 25:123–128

    Google Scholar 

  • Domon C, Evrard JL, Herdenberger F, Pillay DT, Steinmetz A (1990) Nucleotide sequence of two anther-specific cDNAs from sunflower (Helianthus annuus L.). Plant Mol Biol 15:643–646

    Article  PubMed  CAS  Google Scholar 

  • El-Halmouch Y, Benharrat H, Thalouarn P (2006) Effect of root exudates from different tomato genotypes on broomrape (O. aegyptiaca) seed germination and tubercle development. Crop Protect 25:501–507

    Article  Google Scholar 

  • Elmorjani K, Lurquin V, Lelion A, Rogniaux H, Marion D (2004) A bacterial expression system revisited for the recombinant production of cystine-rich plant lipid transfer proteins. Biochem Biophys Res Commun 316:1202–1209

    Article  PubMed  CAS  Google Scholar 

  • Fossdal CG, Nagy NE, Sharma P, Lonneborg A (2003) The putative gymnosperm plant defensin polypeptide (SPI1) accumulates after seed germination, is not readily released, and the SPI1 levels are reduced in Pythium dimorphum-infected spruce roots. Plant Mol Biol 52:291–302

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Bidney DL, Yalpani N, Duvick JP, Castra O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133:170–181

    Article  PubMed  CAS  Google Scholar 

  • Iacomi-Vasilescu B, Avenot H, Bataillé-Simoneau N, Laurent E, Guénard M, Simoneau P (2004) In vitro fungicide sensitivity of Alternaria species pathogenic to crucifers and identification of Alternaria brassicicola field isolates highly resistant to both dicarboximides and phenylpyrroles. Crop Protect 23:481–488

    Article  CAS  Google Scholar 

  • Johansson T, Le Quere A, Ahren D, Soderstrom B, Erlandsson R, Lundeberg J, Uhlen M, Tunlid A (2004) Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant Microbe Interact 17:202–215

    Article  PubMed  Google Scholar 

  • Labrousse P, Arnaud MC, Serieys H, Berville A, Thalouarn P (2001) Several mechanisms are involved in resistance of Helianthus to Orobanche cumana Wallr. Ann Bot 88:859–868

    Article  Google Scholar 

  • Lay FT, Anderson MA (2005) Defensins–components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101

    Article  PubMed  CAS  Google Scholar 

  • Lay FT, Brugliera F, Anderson MA (2003) Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol 131:1283–1293

    Article  PubMed  CAS  Google Scholar 

  • Letousey P, de Zélicourt A, Vieira Dos Santos C, Thoiron S, Monteau F, Simier P, Thalouarn P, Delavault P (2007) Molecular analysis of sunflower resistance mechanisms to Orobanche cumana. Plant Pathol (in press). doi 10.1111/j.1365–3059.2007.01575.x

  • Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17:2636–2641

    Article  PubMed  CAS  Google Scholar 

  • Mabrouk Y, Zourgui L, Sifi B, Delavault P, Simier P, Belhadj O (2007) Some compatible Rhizobium leguminousarum strains in peas decrease infections when parasitized by Orobanche crenata. Weed Res 47:44–53

    Article  Google Scholar 

  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  PubMed  CAS  Google Scholar 

  • Mortimer RK, Johnston JR (1986) Genealogy of principal strains of the yeast genetic stock center. Genetics 113:35–43

    PubMed  CAS  Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262

    Article  PubMed  CAS  Google Scholar 

  • Pérez-De-Luque A, Jorrin JV, Cubero JI, Rubiales D (2005a) Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res 45:379–387

    Article  Google Scholar 

  • Pérez-De-Luque A, Rubiales D, Cubero JI, Press MC, Scholes J, Yoneyama K, Takeuchi Y, Plakhine D, Joel DM (2005b) Interaction between Orobanche crenata and its host legumes: unsuccessful haustorial penetration and necrosis of the developing parasite. Ann Bot 95:935–942

    Article  Google Scholar 

  • Richard C, Drider D, Elmorjani K, Marion D, Prevost H (2004) Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. J Bacteriol 186:4276–4284

    Article  PubMed  CAS  Google Scholar 

  • Rubiales D, Pérez-De-Luque A, Cubero JI, Sillero JC (2003a) Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Protect 22:865–872

    Google Scholar 

  • Rubiales D, Pérez-De-Luque A, Joel DM, Alcantara C, Sillero JC (2003b) Characterization of resistance in chickpea to crenate broomrape (Orobanche crenata). Weed Sci 51:702–707

    Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    Article  PubMed  CAS  Google Scholar 

  • Serghini K, Pérez de Luque A, Castejon-Munoz M, Garcia-Torres L, Jorrin JV (2001) Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins. J Exp Bot 52:2227–2234

    PubMed  CAS  Google Scholar 

  • Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta Mol Cell Biol Lipids 1632:1–15

    Article  CAS  Google Scholar 

  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J, Cammue BP, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    Article  PubMed  CAS  Google Scholar 

  • Terras FRG, Schoofs HME, De Bolle MFC, Van Leuven F, Rees SB, Vanderleyden J, Cammue BPA, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301–15309

    PubMed  CAS  Google Scholar 

  • Thevissen K, Ferket KKA, François IEJA, Cammue BPA (2003) Interactions of antifungal plant defensins with fungal membrane components. Peptides 24:1705–1712

    Article  PubMed  CAS  Google Scholar 

  • Thevissen K, Osborn RW, Acland DP, Broekaert WF (2000) Specific binding sites for an antifungal plant defensin from dahlia (Dahlia merckii) on fungal cells are required for antifungal activity. Mol Plant Microbe Interact 13:54–61

    Article  PubMed  CAS  Google Scholar 

  • Thevissen K, Terras FRG, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defensins. Planta 216:193–202

    Article  PubMed  CAS  Google Scholar 

  • Urdangarin MC, Norero NS, Broekaert WF, De La Canal L (2000) A defensin gene expressed in sunflower inflorescence. Plant Physiol Biochem 38:253–258

    Article  CAS  Google Scholar 

  • Vieira Dos Santos C, Letousey P, Delavault P, Thalouarn P (2003) Defense gene expression analysis of Arabidopsis thaliana parasitized by Orobanche ramosa. Phytopathology 93:451–457

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Research and Technology of France and partly by the Ouest-genopole and INRA. We thank S. Delgrange, S. Rezé and A. Lelion for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Delavault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Zélicourt, A., Letousey, P., Thoiron, S. et al. Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants. Planta 226, 591–600 (2007). https://doi.org/10.1007/s00425-007-0507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0507-1

Keywords

Navigation