Skip to main content
Log in

Bending of a Saturated Ferromagnetoelastic Plate Under a Local Mechanical Load

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

We study the bending of a magnetically saturated ferromagnetoelastic plate. The plate is rectangular and simply-supported along its edges. It is under a local distribution of normal mechanical load on its top surface, simulating a mechanical probe or manipulation of the magnetization field. The three-dimensional equations of saturated ferromagnetoelasticity for small fields superposed on finite biasing fields due to spontaneous magnetization are used. The plate is effectively piezomagnetic under the biasing fields. A trigonometric series solution is obtained. The perturbation of the magnetization field by the mechanical load is calculated and examined. It is found that the magnetization is sensitive to the mechanical load, particularly near the loading area. The perturbation of the magnetization is found to be associated with the transverse shear stresses in bending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available within the article.

References

  1. Chen JY, Chen HL, Pan EN. Free vibration of functionally graded, magneto-electro-elastic, and multilayered plates. Acta Mech Solida Sin. 2006;19(2):160–6.

    Article  Google Scholar 

  2. Zhang ZC, Wang XZ. Effective multi-field properties of electro-magneto-thermoelastic composites estimated by finite element method approach. Acta Mech Solida Sin. 2015;28(2):145–55.

    Article  Google Scholar 

  3. Zhang YF, Zhou HM, Zhou YH. Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers. Acta Mech Solida Sin. 2015;28(01):50–61.

    Article  Google Scholar 

  4. Zhang CL, Zhang LL, Shen XD, Chen WQ. Enhancing magnetoelectric effect in multiferroic composite bilayers via flexoelectricity. J Appl Phys. 2016;119(13):134102.

    Article  Google Scholar 

  5. Xu MX, Gitman IM, Askes H. A gradient-enriched continuum model for magneto-elastic coupling: formulation, finite element implementation and in-plane problems. Comput Struct. 2019;212:275–88.

    Article  Google Scholar 

  6. Bao HY, Wang YZ, Wang YS. Elastic wave cloak and invisibility of piezoelectric/piezomagnetic mechanical metamaterials. J Acoust Soc Am. 2020;148(6):3722–36.

    Article  Google Scholar 

  7. Malikan M, Eremeyev VA. Flexomagnetic response of buckled piezomagnetic composite nanoplates. Compos Struct. 2021;267:113932.

    Article  Google Scholar 

  8. Miranda EJP, Rodrigues SF, Dos Santos JMC. Complex dispersion diagram and evanescent modes in piezomagnetic phononic structures. Solid State Commun. 2022;346:114697.

    Article  Google Scholar 

  9. Prabhakar A, Stancil DD. Spin waves: theory and applications. New York: Springer; 2009.

    MATH  Google Scholar 

  10. Oeckinghaus T, Momenzadeh SA, Scheiger P, Shalomayeva T, Finkler A, Dasari D, Stöhr R, Wrachtrup J. Spin-phonon interfaces in coupled nanomechanical cantilevers. Nano Lett. 2020;20(1):463–9.

    Article  Google Scholar 

  11. Grütter P, Meyer E, Heinzelmann H, Rosenthaler L, Hidber HR, Güntherodt HJ. Application of atomic force microscopy to magnetic materials. J Vac Sci Technol A. 1988;6(2):279–82.

    Article  Google Scholar 

  12. Hartmann U. Magnetic force microscopy. Ann Rev Mater Sci. 1999;29(1):53–87.

    Article  Google Scholar 

  13. Tiersten HF. Coupled magnetomechanical equations for magnetically saturated insulators. J Math Phys. 1964;5(9):1298–318.

    Article  MathSciNet  MATH  Google Scholar 

  14. Tiersten HF. Variational principle for saturated magnetoelastic insulators. J Math Phys. 1965;6(5):779–87.

    Article  MathSciNet  Google Scholar 

  15. Tiersten HF, Tsai CF. On the interaction of the electromagnetic field with heat conducting deformable insulators. J Math Phys. 1972;13(3):361–78.

    Article  Google Scholar 

  16. Brown WF. Theory of magnetoelastic effects in ferromagnetism. J Appl Phys. 1965;36(3):994–1000.

    Article  Google Scholar 

  17. Brown WF. Magnetoelastic interactions. New York: Springer, Berlin, Heidelberg; 1966.

    Book  Google Scholar 

  18. Maugin GA, Eringen AC. Deformable magnetically saturated media I. Field equations. J Math Phys. 1972;13(2):143–55.

    Article  Google Scholar 

  19. Maugin GA, Eringen AC. Deformable magnetically saturated media. II. Constitutive theory. J Math Phys. 1972;13(9):1334–47.

    Article  Google Scholar 

  20. Tiersten HF. Thickness vibrations of saturated magnetoelastic plates. J Appl Phys. 1965;36(7):2250–9.

    Article  Google Scholar 

  21. Kobayashi T, Barker RC, Bleustein JL, Yelon A. Ferromagnetoelastic resonance in thin films I. Formal treatment. Phys Rev B. 1973;7(7):3273–85.

    Article  Google Scholar 

  22. Kobayashi T, Barker RC, Yelon A. Ferromagnetoelastic resonance in thin films. II. Application to nickel. Phys Rev B. 1973;7(7):3286–97.

    Article  Google Scholar 

  23. Dewar G, Alexandrakis GC. Phonon excitation and propagation in thick iron films. J Appl Phys. 1982;53(11):8116–8.

    Article  Google Scholar 

  24. Gareeva ZV, Doroshenko RA. Thickness-shear modes and magnetoelastic waves in a longitudinally magnetized ferromagnetic plate. J Magn Magn Mater. 2008;320(18):2249–51.

    Article  Google Scholar 

  25. Momenzadeh SA, De Oliveira FF, Neumann P, Rao DDB, Denisenko A, Amjadi M, Chu Z, Yang S, Manson NB, Doherty MW, Wrachtrup J. Thin circular diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems. Phys Rev Appl. 2016;6:024026.

    Article  Google Scholar 

  26. Besse V, Golov AV, Vlasov VS, Alekhin A, Kuzmin D, Bychkov IV, Kotov LN, Temnov VV. Generation of exchange magnons in thin ferromagnetic films by ultrashort acoustic pulses. J Magn Magn Mater. 2020;502:166320.

    Article  Google Scholar 

  27. Bakharev SM, Borich MA, Savchenko SP. Caustic of magnetoelastic waves in elastically isotropic ferromagnets. J Magn Magn Mater. 2021;530(5):167862.

    Article  Google Scholar 

  28. Gareyeva ZV, Doroshenko RA. Dimensional resonances of elastic and magnetoelastic vibrations in two layered structure. J Magn Magn Mater. 2006;303(1):221–6.

    Article  Google Scholar 

  29. Gareeva ZV, Doroshenko RA, Seregin SV. Thickness shear modes in structures with alternating magnetic and nonmagnetic layers. Phys Met Metallogr. 2007;103(5):461–5.

    Article  Google Scholar 

  30. Polzikova NI, Alekseev SG, Luzanov VA, Raevskiy AO. Resonant spin pumping in an acoustic microwave resonator with ZnO-GGG-YIG/Pt structure. Bull Russ Acad Sci Phys. 2019;83(7):828–31.

    Article  Google Scholar 

  31. Qu YL, Jin F, Yang JS. Stress-induced electric potential barriers in thickness-stretch deformations of a piezoelectric semiconductor plate. Acta Mech. 2021;232(11):4533–43.

    Article  MathSciNet  MATH  Google Scholar 

  32. Waksmanski N, Pan E, Yang LZ, Gao Y. Harmonic response of multilayered one-dimensional quasi-crystal plates subjected to patch loading. J Sound Vib. 2016;375:237–53.

    Article  Google Scholar 

  33. Yang LZ, Li Y, Gao Y, Pan E, Waksmanski N. Three-dimensional exact electric-elastic analysis of a multilayered two-dimensional decagonal quasicrystal plate subjected to patch loading. Compos Struct. 2017;162:401–10.

    Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China [No. 11572244, Xiaoshan Cao]. It was also supported by the Natural Science Foundation of Shaanxi Province, China [No. 2021JZ-47, Xiaoshan Cao].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiashi Yang or Xiaoshan Cao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Cao, X. & Xu, W. Bending of a Saturated Ferromagnetoelastic Plate Under a Local Mechanical Load. Acta Mech. Solida Sin. 36, 794–801 (2023). https://doi.org/10.1007/s10338-023-00425-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-023-00425-9

Keywords

Navigation