Skip to main content
Log in

Bending of a Flexoelectric Semiconductor Plate

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

We study electromechanical responses of a flexoelectric semiconductor plate in bending under mechanical loads. A two-dimensional theory for classical bending without shear deformation is derived from the three-dimensional macroscopic theory of flexoelectric semiconductors. A simple solution is obtained for pure bending. A combination of physical and geometric parameters is introduced as a measure of the strength of the coupling between the mechanical load and the redistribution of charge carriers. A trigonometric series solution is obtained for a simply supported rectangular plate under a local normal mechanical load, which shows concentration of mobile charges and the formation of electric potential barriers near the loading area. The results are fundamental to the mechanical manipulation of charge carriers in these plates. We also analyze the buckling of a simply supported rectangular plate under in-plane compressive forces. A series of buckling loads and modes are obtained. Numerical results show that flexoelectric coupling exhibits a stiffening effect and increases the buckling load, while semiconduction weakens the flexoelectric stiffening. The distributions of mobile charges in the first few buckling modes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Meitzler AH, Tiersten HF, Warner AW, Berlincourt D, Couqin GA, Welsh FS III. IEEE standard on piezoelectricity. New York: IEEE; 1988.

    Google Scholar 

  2. Tiersten HF. Linear piezoelectric plate vibrations. New York: Plenum; 1969.

    Book  Google Scholar 

  3. Auld BA. Acoustic fields and waves in solids, vol. 1. New York: Wiley; 1973.

    Google Scholar 

  4. Sahin E, Dost S. A strain-gradients theory of elastic dielectrics with spatial dispersion. Int J Eng Sci. 1988;26:1231–45.

    Article  Google Scholar 

  5. Tagantsev AK. Theory of flexoelectric effect in crystals. Sov Phys JETP. 1985;61:1246–54.

    Google Scholar 

  6. Tagantsev AK. Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys Rev B. 1986;32:5883–9.

    Article  Google Scholar 

  7. Ma W, Cross LE. Flexoelectricity of barium titanate. Appl Phys Lett. 2006;88:232902.

    Article  Google Scholar 

  8. Cross LE. Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J Mater Sci. 2006;41:53–63.

    Article  Google Scholar 

  9. Tagantsev AK, Meunier V, Sharma P. Novel electromechanical phenomena at the nanoscale: phenomenological theory and atomistic modeling. MRS Bull. 2009;34:643–7.

    Article  Google Scholar 

  10. Maranganti R, Sharma P. Atomistic determination of flexoelectric properties of crystalline dielectrics. Phys Rev B. 2009;80:054109.

    Article  Google Scholar 

  11. Shen S, Hu S. A theory of flexoelectricity with surface effect for elastic dielectrics. J Mech Phys Solids. 2010;58:665–77.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hickernell FS. The piezoelectric semiconductor and acoustoelectronic device development in the sixties. IEEE Trans Ultrason Ferroelectr Freq Control. 2005;52:737–45.

    Article  Google Scholar 

  13. Wang ZL, Wu W, Falconi C. Piezotronics and piezophototronics with third generation semiconductors. MRS Bull. 2018;43:922–7.

    Article  Google Scholar 

  14. Zhang Y, Leng Y, Willatzen M, Huang B. Theory of piezotronics and piezophototronics. MRS Bull. 2018;43:928–35.

    Article  Google Scholar 

  15. Hu W, Kalantar-Zadeh K, Gupta K, Liu C. Piezotronic materials and large-scale piezotronics array devices. MRS Bull. 2018;43:936–40.

    Article  Google Scholar 

  16. Frömling T, Yu R, Mintken M, Adelung R, Rödel J. Piezotronic sensors. MRS Bull. 2018;43:941–5.

    Article  Google Scholar 

  17. Wang X, Rohrer G, Li H. Piezotronic modulations in electro- and photochemical catalysis. MRS Bull. 2018;43:946–51.

    Article  Google Scholar 

  18. Bao R, Hu Y, Yang Q, Pan C. Piezophototronic effect on optoelectronic nanodevices. MRS Bull. 2018;43:952–8.

    Article  Google Scholar 

  19. Gao PX, Song JH, Liu J, Wang ZL. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv Mater. 2007;19:67–72.

    Article  Google Scholar 

  20. Romano G, Mantini G, Garlo AD, D’Amico A, Falconi C, Wang ZL. Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology. 2011;22:465401.

  21. Wang ZL. Piezotronics and piezo-phototronics. Berlin: Springer; 2012.

    Book  Google Scholar 

  22. Zhang CL, Luo YX, Cheng RR, Wang XY. Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force. MRS Adv. 2017;2:3421–6.

    Article  Google Scholar 

  23. Afraneo R, Lovat G, Burghignoli P, Falconi C. Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Adv Mater. 2012;24:4719–24.

    Article  Google Scholar 

  24. Fan SQ, Liang YX, Xie JM, Hu YT. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: part I-linearized analysis. Nano Energy. 2017;40:82–7.

    Article  Google Scholar 

  25. Liang YX, Fan SQ, Chen XD, Hu YT. Nonlinear effect of carrier drift on the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and semiconduction. Nanotechnology. 2018;9:1917–25.

    Google Scholar 

  26. Jiao FY, Wei PJ, Zhou YH, Zhou XL. Wave propagation through a piezoelectric semiconductor slab sandwiched by two piezoelectric half-spaces. Eur J Mech A Solids. 2019;75:70–81.

    Article  MathSciNet  MATH  Google Scholar 

  27. Jiao FY, Wei PJ, Zhou YH, Zhou XL. The dispersion and attenuation of the multi-physical fields coupled waves in a piezoelectric semiconductor. Ultrasonics. 2019;92:68–78.

    Article  Google Scholar 

  28. Tian R, Liu JX, Pan E, Wang YS, Soh AK. Some characteristics of elastic waves in a piezoelectric semiconductor plate. J Appl Phys. 2019;126:125701.

    Article  Google Scholar 

  29. Sharma JN, Sharma KK, Kumar A. Acousto-diffusive waves in a piezoelectric-semiconductor-piezoelectric sandwich structure. World J Mech. 2011;1:247–55.

    Article  Google Scholar 

  30. Sladek J, Sladek V, Pan E, Young DL. Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals. CMES. 2014;99:273–96.

    MathSciNet  MATH  Google Scholar 

  31. Sladek J, Sladek V, Pan E, Wuensche M. Fracture analysis in piezoelectric semiconductors under a thermal load. Eng Fract Mech. 2014;126:27–39.

    Article  Google Scholar 

  32. Zhao MH, Pan YB, Fan CY, Xu GT. Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors. Int J Solids Struct. 2016;94–95:50–9.

    Article  Google Scholar 

  33. Qin GS, Lu CS, Zhang X, Zhao MH. Electric current dependent fracture in GaN piezoelectric semiconductor ceramics. Materials. 2018;11:2000.

    Article  Google Scholar 

  34. Yang JS. Analysis of piezoelectric semiconductor structures. Cham: Springer Nature Switzerland; 2020.

    Book  MATH  Google Scholar 

  35. Narvaez J, Vasquez-Sancho F, Catalan G. Enhanced flexoelectric-like response in oxide semiconductors. Nature. 2016;538:219–21.

    Article  Google Scholar 

  36. Yang MM, Kim DJ, Alexe M. Flexo-photovoltaic effect. Science. 2020;360:904–7.

    Article  Google Scholar 

  37. Zou H, Zhang C, Xue H, Wu Z, Wang ZL. Boosting the solar cell efficiency by flexo-photovoltaic effect? ACS Nano. 2019;13:12259–67.

    Article  Google Scholar 

  38. Nguyen BH, Zhuang X, Rabczuk T. NURBS-based formulation for nonlinear electro-gradient elasticity in semiconductors. Comput Method Appl Mech. 2019;346:1074–95.

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhao MH, Liu X, Fan CY, Lu CS, Wang BB. Theoretical analysis on the extension of a piezoelectric semi-conductor nanowire: effects of flexoelectricity and strain gradient. J Appl Phys. 2020;127:085707.

    Article  Google Scholar 

  40. Ren C, Wang KF, Wang BL. Adjusting the electromechanical coupling behaviors of piezoelectric semiconductor nanowires via strain gradient and flexoelectric effects. J Appl Phys. 2020;128:215701.

    Article  Google Scholar 

  41. Wang KF, Wang BL. Electrostatic potential in a bent piezoelectric nanowire with consideration of size dependent piezoelectricity and semiconducting characterization. Nanotechnology. 2018;29:255405.

    Article  Google Scholar 

  42. Qu YL, Jin F, Yang JS. Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Arch Appl Mech. 2021;91:2027–38.

    Article  Google Scholar 

  43. Qu YL, Jin F, Yang JS. Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors. J Appl Phys. 2020;127:194502.

    Article  Google Scholar 

  44. Wang LF, Liu SH, Feng XL, Zhang CL, Zhu LP, Zhai JY, Qin Y, Wang ZL. Flexoelectronics of centrosymmetric semiconductors. Nat Nanotechnol. 2020;15:661–7.

    Article  Google Scholar 

  45. Pierret RF. Semiconductor device fundamentals. Noida: Pearson; 1996.

    Google Scholar 

  46. Yang W, Liang X, Shen S. Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 2015;226:3097–110.

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang ZR, Yan Z, Jiang LY. Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. J Appl Phys. 2014;116:014307.

    Article  Google Scholar 

  48. Zhang ZR, Jiang LY. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. J Appl Phys. 2014;116:134308.

    Article  Google Scholar 

  49. Ghobadi A, Beni YT, Golestanian H. Size dependent nonlinear bending analysis of a flexoelectric functionally graded nano-plate under thermo-electro-mechanical loads. J Solid Mech. 2020;12:33–56.

    Google Scholar 

  50. Ji X, Li AQ. The size-dependent electromechanical coupling response in circular micro-plate due to flexoelectricity. J Mech. 2017;33:873–83.

    Article  Google Scholar 

  51. Liang X, Hu SL, Shen SP. Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Mater Struct. 2015;24:105012.

    Article  Google Scholar 

  52. Liang X, Yang WJ, Hu SL, Shen SP. Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. J Phys D Appl Phys. 2016;49:115307.

    Article  Google Scholar 

  53. Ebrahimi F, Barati MR. Static stability analysis of embedded flexoelectric nanoplates considering surface effects. Appl Phys A. 2017;123:666.

    Article  Google Scholar 

  54. Ebrahimi F, Karimiasl M. Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams. Mech Adv Mater Struct. 2018;25(11):943–52.

    Article  Google Scholar 

  55. Amir S, Khorasani M, BabaAkbar-Zarei H. Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory. J Sandw Struct Mater. 2020;22(7):2186–209.

    Article  Google Scholar 

  56. Timoshenko SP, Gere JM. Theory of elastic stability. New York: McGraw-Hill; 1961.

    Google Scholar 

  57. Yang JS. Buckling of a piezoelectric plate. Int J Appl Electromagn Mech. 1998;9:399–408.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 12072253), 111 Project version 2.0, and the Fundamental Research Funds for the Central Universities (xzy022020016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Jin or Jiashi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Jin, F. & Yang, J. Bending of a Flexoelectric Semiconductor Plate. Acta Mech. Solida Sin. 35, 434–445 (2022). https://doi.org/10.1007/s10338-021-00296-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00296-y

Keywords

Navigation