Skip to main content
Log in

An Approximation for Rapid Simulation of Thin-Film Bulk Acoustic Resonators (FBARs) with Sandwich-Layered Structure

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Thin-film bulk acoustic resonators (FBARs) operating with essentially thickness-extensional mode have been widely used in communication fields. In this paper, we provide a convenient means for analyzing FBARs with sandwich-layered structure by appropriately neglecting the high-order terms from 3D elasticity equations. First, for straight-crested waves, an approximate method is proposed, which can accurately describe the dispersion relation near the operating frequency range of an FBAR. Using the approximation, the optimum lateral size of a 2D model of frame-like FBAR is obtained, and the results are in good agreement with that obtained by commercial FEM software COMSOL. The approximation is further extended to variable-crested waves in order to analyze the 3D plate models for real devices. The mode shapes of 3D FBARs with and without frame-like structures are obtained. The results show that the approximation presented in this paper is of sufficient accuracy and can be used as an efficient tool for the analysis and design of FBARs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jamneala T, Bradley P, Shirakawa A, Thalhammer RK, Ruby R. An investigation of lateral modes in FBAR resonators. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63(5):778–89.

    Article  Google Scholar 

  2. Jamneala T, Kirkendall C, Ivira B, Thalhammer RK, Bradley P, Ruby R. The main lateral mode approximation of a film bulk acoustic resonator with perfect metal electrodes. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(9):1703–16.

    Article  Google Scholar 

  3. Qin L, Chen Q, Cheng H, Wang QM. Analytical study of dual mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(8):1840–53.

    Article  Google Scholar 

  4. Yanagitani Y, Morisato N, Takayanagi S, Matsukawa M, Watanabe Y. C-Axis Zig-Zag ZnO film ultrasonic transducers for designing longitudinal and shear wave resonant frequencies and modes. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58(5):1062–8.

    Article  Google Scholar 

  5. Piazza G, Stephanou PJ, Pisano AP. Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. J Microelectromech Syst. 2006;15(6):1406–18.

    Article  Google Scholar 

  6. Piazza G, Stephanou PJ, Pisano AP. One and two port piezoelectric higher order contour-mode MEMS resonators for mechanical signal processing. Solid-State Electron. 2007;51:1596–608.

    Article  Google Scholar 

  7. Lee SH, Yoon KH, Lee JK. Influence of electrode configurations on the quality factor and piezoelectric coupling constant of solidly mounted bulk acoustic wave resonators. J Appl Phys. 2002;92(7):4062–9.

    Article  Google Scholar 

  8. Chen D, Zhang Y. Multilayer Integrated Film Bulk Acoustic Resonators. Shanghai, China: Shanghai Jiaotong Univ; 2013.

    Google Scholar 

  9. Du JK, Xian K, Wang J, Yang JS. Thickness vibration of piezoelectric plates of 6 mm crystals with tilted six-fold axis and two-layered thick electrodes. Ultrasonics. 2009;49:149–52.

    Article  Google Scholar 

  10. Li N, Qian ZH, Yang JS. Two-dimensional equations for piezoelectric thin-film acoustic wave resonators. Int J Solids Struct. 2017;110–111:170–7.

    Article  Google Scholar 

  11. Tiersten HF. Analysis of trapped-energy resonators operating in overtones of coupled thickness-shear and thickness-twist. J Acoust Soc Am. 1976;59(4):879–88.

    Article  MATH  Google Scholar 

  12. Tiersten HF. Analysis of intermodulation in thickness−shear and trapped energy resonators. J Acoust Soc Am. 1975;57(3):667–81.

    Article  Google Scholar 

  13. He HJ, Yang JS, Kosinski JA. Scalar differential equation for slowly-varying thickness-shear modes in AT-Cut quartz resonators with surface impedance for acoustic wave sensor application. IEEE Sensors J. 2013;13(11):4349–55.

    Article  Google Scholar 

  14. He HJ, Yang JS, Kosinski JA, Zhang HF. Scalar differential equations for transversely varying thickness modes in doubly rotated quartz crystal sensors. IEEE Sensors Letters. 2018;2(3):1–4.

    Article  Google Scholar 

  15. Tiersten HF, Stevens DS. An analysis of thickness-extensional trapped energy resonators with rectangular electrodes in the piezoelectric thin film on silicon configuration. J Appl Phys. 1983;54(10):5893–910.

    Article  Google Scholar 

  16. Huang HY, Zhu F, Zhu JQ, Wang B, Qian ZH. A general approach for dispersion relations in multilayered structures with an arbitrary number of piezoelectric layers and elastic layers. Acta Mech. 2020;231:489–502.

    Article  MathSciNet  Google Scholar 

  17. Zhu F, Wang B, Qian ZH. A numerical algorithm to solve multivariate transcendental equation sets in complex domain and its application in wave dispersion curve characterization. Acta Mech. 2017;230(4):1303–21.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gravenkamp H, Song CM, Prager J. A numerical approach for the computation of dispersion relations for plate structures using the scaled boundary finite element method. J Sound Vib. 2012;331(11):2543–57.

    Article  Google Scholar 

  19. Pensala T, Ylilammi M. Spurious resonance suppression in gigahertz-range ZnO Thin-Film bulk acoustic wave resonators by the boundary frame method: Modeling and experiment. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(8):1731–44.

    Article  Google Scholar 

  20. Nguyen N, Johannessen A, Rooth S, Hanke U. A design approach for High-Q FBARs with a dual-step frame. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65(9):1717–25.

    Article  Google Scholar 

  21. Li N, Wang B, Qian ZH. Suppression of Spurious Lateral Modes and Undesired Coupling Modes in Frame-Like FBARs by 2-D Theory. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67(1):180–90.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12061131013, 11972276, 12172171 and 12102183), the State Key Laboratory of Mechanics and Control of Mechanical Structures at NUAA (No. MCMS-E-0520K02), the Fundamental Research Funds for the Central Universities (NE2020002 and NS2019007), National Natural Science Foundation of China for Creative Research Groups (No. 51921003), the Start-up Fund supported by NUAA, National Natural Science Foundation of Jiangsu Province (BK20211176), Local Science and Technology Development Fund Projects Guided by the Central Government (2021Szvup061), Jiangsu High-Level Innovative and Entrepreneurial Talents Introduction Plan (Shuangchuang Doctor Program, JSSCBS20210166), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

ZQ and NL: conceived the main ideas and supervised the research. HH and XX: performed numerical simulations, discussed the results, and wrote the manuscript. GY supervised the research and made contributions to the revised manuscript.

Corresponding author

Correspondence to Zhenghua Qian.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Appendix: Detailed Derivation of Substituting Displacement Solutions into Boundary Conditions

Appendix: Detailed Derivation of Substituting Displacement Solutions into Boundary Conditions

At interfaces x3 = hf and x3 = 0, substituting displacement solutions into constitutive equations, we have.

$$ \begin{gathered} \left[ {\begin{array}{*{20}c} {u_{1}^{f} } \\ {T_{33}^{f} } \\ {u_{3}^{f} } \\ {T_{31}^{f} } \\ \end{array} } \right]^{h} { = }S^{f} \left[ {\begin{array}{*{20}c} {\alpha_{1h}^{f} } \\ {\beta_{2h}^{f} } \\ {\beta_{1h}^{f} } \\ {\alpha_{2h}^{f} } \\ \end{array} } \right] + \frac{e^s}{{h^{f} }}P\left( {\left[ {\begin{array}{*{20}c} {\alpha_{1}^{f} } \\ {\beta_{2}^{f} } \\ {\beta_{1}^{f} } \\ {\alpha_{2}^{f} } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} {\alpha_{1h}^{f} } \\ {\beta_{2h}^{f} } \\ {\beta_{1h}^{f} } \\ {\alpha_{2h}^{f} } \\ \end{array} } \right]} \right) \, \hfill \\ \left[ {\begin{array}{*{20}c} {u_{1}^{f} } \\ {T_{33}^{f} } \\ {u_{3}^{f} } \\ {T_{31}^{f} } \\ \end{array} } \right]^{0} { = }S^{f} \left[ {\begin{array}{*{20}c} {\alpha_{1}^{f} } \\ {\beta_{2}^{f} } \\ {\beta_{1}^{f} } \\ {\alpha_{2}^{f} } \\ \end{array} } \right] + \frac{e^s}{{h^{f} }}P\left( {\left[ {\begin{array}{*{20}c} {\alpha_{1}^{f} } \\ {\beta_{2}^{f} } \\ {\beta_{1}^{f} } \\ {\alpha_{2}^{f} } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} {\alpha_{1h}^{f} } \\ {\beta_{2h}^{f} } \\ {\beta_{1h}^{f} } \\ {\alpha_{2h}^{f} } \\ \end{array} } \right]} \right)\hfill \\ \end{gathered} $$
(A1)

where

$$ \begin{gathered} S^{f} = \left[ {\begin{array}{*{20}c} 1 & {r_{1}^{f} \xi } & {} & {} \\ {q_{f} \xi } & { - c_{13}^{f} r_{1}^{f} \xi^{2} + \overline{c}_{33}^{f} \text{i}\eta_{f1} } & {} & {} \\ {} & {} & 1 & { - r_{2}^{f} \xi } \\ {} & {} & { - q_{f} \xi } & {c_{55}^{f} \left( {\text i\eta_{f2} + r_{2}^{f} \xi^{2} } \right)} \\ \end{array} } \right], \hfill \\ P = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & { - r_{2}^{f} \xi } \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right] \hfill \\ \end{gathered} $$
(A2)
$$ \begin{gathered} r_{1}^{f} = {{r^{f} } \mathord{\left/ {\vphantom {{r^{f} } {\eta_{f1} }}} \right. \kern-0pt} {\eta_{f1} }}\hfill \\ r_{2}^{f} = {{r^{f} } \mathord{\left/ {\vphantom {{r^{f} } {\eta_{f2} }}} \right. \kern-0pt} {\eta_{f2} }}\hfill \\ q_{f} = - c_{55}^{f} \left( {\text{i}r^{f0} - 1} \right) \hfill \\ \end{gathered} $$
(A3)
$$ \begin{gathered} \left[ {\begin{array}{*{20}c} {\alpha_{1h}^{f} } \\ {\alpha_{2h}^{f} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\text{e}^{{\text{i}\eta_{f2} h^{f} }} } & {\text{e}^{{ - \text{i}\eta_{f2} h^{f} }} } \\ {\text{e}^{{\text{i}\eta_{f2} h^{f} }} } & { - \text{e}^{{ - \text{i}\eta_{f2} h^{f} }} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {A_{1}^{f2} } \\ {A_{2}^{f2} } \\ \end{array} } \right] \, \hfill \\ \left[ {\begin{array}{*{20}c} {\beta_{1h}^{f} } \\ {\beta_{2h}^{f} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\text{e}^{{\text{i}\eta_{f1} h^{f} }} } & {\text{e}^{{ - \text{i}\eta_{f1} h^{f} }} } \\ {\text{e}^{{\text{i}\eta_{f1} h^{f} }} } & { - \text{e}^{{ - \text{i}\eta_{f1} h^{f} }} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {B_{1}^{f1} } \\ {B_{2}^{f1} } \\ \end{array} } \right] \, \hfill \\ \left[ {\begin{array}{*{20}c} {\alpha_{1}^{f} } \\ {\alpha_{2}^{f} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 1 & 1 \\ 1 & { - 1} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {A_{1}^{f2} } \\ {A_{2}^{f2} } \\ \end{array} } \right], \, \left[ {\begin{array}{*{20}c} {\beta_{1}^{f} } \\ {\beta_{2}^{f} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {1} & {1} \\ {1} & { - 1} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {B_{1}^{f1} } \\ {B_{2}^{f1} } \\ \end{array} } \right]\hfill \\ \end{gathered} $$
(A4)

By Taylor's expansion and elimination of higher-order terms, we have

$$ \left( {S^{f} } \right)^{ - 1} = \left[ {\begin{array}{*{20}c} {\tilde{S}_{11} } & {\tilde{S}_{12} } & {} & {} \\ {\tilde{S}_{21} } & {\tilde{S}_{22} } & {} & {} \\ {} & {} & {\tilde{S}_{33} } & {\tilde{S}_{34} } \\ {} & {} & {\tilde{S}_{43} } & {\tilde{S}_{44} } \\ \end{array} } \right] $$
(A5)

where

$$ \begin{gathered} \tilde{S}_{11} = \Delta_{1}^{f} q_{f} r_{1}^{f} \xi^{2} + 1, \, \tilde{S}_{12} = - \Delta_{1}^{f} r_{1}^{f} \xi \hfill \\ \tilde{S}_{21} = - q_{f} \Delta_{1}^{f} \xi , \, \tilde{S}_{22} = \Delta_{1}^{f} \left( {1 - \left( {r_{1}^{f} \xi } \right)^{2} } \right) \hfill \\ \tilde{S}_{33} = \Delta_{2}^{f} q_{f} r_{2}^{f} \xi^{2} + 1, \, \tilde{S}_{34} = \Delta_{2}^{f} r_{2}^{f} \xi \hfill \\ \tilde{S}_{43} = q_{f} \Delta_{2}^{f} \xi , \, \tilde{S}_{44} = \Delta_{2}^{f} \left( {1 - \left( {r_{2}^{f} \xi } \right)^{2} } \right)\hfill \\ \end{gathered} $$

and

$$ \Delta_{1}^{f} = \frac{1}{{\overline{c}_{33}^{f} \text{i}\eta_{f1} }}, \, \Delta_{2}^{f} = \frac{1}{{c_{55}^{f} \text{i}\eta_{f2} }} $$

On the other hand, we can obtain the following relationship by eliminating undetermined amplitude coefficients in Eq. (A4):

$$ \left[ {\begin{array}{*{20}c} {\alpha_{1h}^{f} } \\ {\beta_{2h}^{f} } \\ {\beta_{1h}^{f} } \\ {\alpha_{2h}^{f} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {cs^{f2} } & {} & {} & {sn^{f2} } \\ {} & {cs^{f1} } & {sn^{f1} } & {} \\ {} & {sn^{f1} } & {cs^{f1} } & {} \\ {sn^{f2} } & {} & {} & {cs^{f2} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\alpha_{1}^{f} } \\ {\beta_{1}^{f} } \\ {\alpha_{2}^{f} } \\ {\beta_{2}^{f} } \\ \end{array} } \right] = {E}^{f} \left[ {\begin{array}{*{20}c} {\alpha_{1}^{f} } \\ {\beta_{1}^{f} } \\ {\alpha_{2}^{f} } \\ {\beta_{2}^{f} } \\ \end{array} } \right] $$
(A6)

where

$$ \begin{gathered} sn^{f1} = \text{i}\sin \left( {\eta_{f1} h^{f} } \right), \, sn^{f2} = \text{i}\sin \left( {\eta_{f2} h^{f} } \right) \hfill \\ cs^{f1} = \cos \left( {\eta_{f1} h^{f} } \right), \, cs^{f2} = \cos \left( {\eta_{f2} h^{f} } \right) \hfill \\ \end{gathered} $$

For two electrodes, \(S^{d} ,E^{d} ,S^{g}\) and \(E^{g}\) can be obtained easily through the replacement of material constants, the detailed derivation process of which is therefore omitted herein. The continuity conditions at interfaces x3 = hf and x3 = 0 are as follows:

$$ \begin{gathered} S^{d} \left[ {\begin{array}{*{20}c} {\alpha_{1}^{d} } \\ {\beta_{2}^{d} } \\ {\beta_{1}^{d} } \\ {\alpha_{2}^{d} } \\ \end{array} } \right] = S^{f} \left[ {\begin{array}{*{20}c} {\alpha_{1h}^{f} } \\ {\beta_{2h}^{f} } \\ {\beta_{1h}^{f} } \\ {\alpha_{2h}^{f} } \\ \end{array} } \right] + \frac{e^s}{{h^{f} }}P\left( {\left[ {\begin{array}{*{20}c} {\alpha_{1}^{f} } \\ {\beta_{2}^{f} } \\ {\beta_{1}^{f} } \\ {\alpha_{2}^{f} } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} {\alpha_{1h}^{f} } \\ {\beta_{2h}^{f} } \\ {\beta_{1h}^{f} } \\ {\alpha_{2h}^{f} } \\ \end{array} } \right]} \right) \hfill \\ S^{g} \left[ {\begin{array}{*{20}c} {\alpha_{1}^{g} } \\ {\beta_{2}^{g} } \\ {\beta_{1}^{g} } \\ {\alpha_{2}^{g} } \\ \end{array} } \right] = S^{f} \left[ {\begin{array}{*{20}c} {\alpha_{1}^{f} } \\ {\beta_{2}^{f} } \\ {\beta_{1}^{f} } \\ {\alpha_{2}^{f} } \\ \end{array} } \right] + \frac{e^s}{{h^{f} }}P\left( {\left[ {\begin{array}{*{20}c} {\alpha_{1}^{f} } \\ {\beta_{2}^{f} } \\ {\beta_{1}^{f} } \\ {\alpha_{2}^{f} } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} {\alpha_{1h}^{f} } \\ {\beta_{2h}^{f} } \\ {\beta_{1h}^{f} } \\ {\alpha_{2h}^{f} } \\ \end{array} } \right]} \right) \hfill \\ \end{gathered} $$
(A7)

The traction-free boundary conditions of the top and bottom surfaces of the plate are as follows:

$$ \begin{gathered} \left[ {\begin{array}{*{20}c} {T_{33}^{d} } \\ {T_{31}^{d} } \\ \end{array} } \right]^{h} { = }S^{d} \left( {\left[ {2,4} \right],:} \right)\left[ {\begin{array}{*{20}c} {\alpha_{1h}^{d} } \\ {\beta_{2h}^{d} } \\ {\beta_{1h}^{d} } \\ {\alpha_{2h}^{d} } \\ \end{array} } \right] = 0 \hfill \\ \left[ {\begin{array}{*{20}c} {T_{33}^{g} } \\ {T_{31}^{g} } \\ \end{array} } \right]^{h} { = }S^{g} \left( {\left[ {2,4} \right],:} \right)\left[ {\begin{array}{*{20}c} {\alpha_{1h}^{g} } \\ {\beta_{2h}^{g} } \\ {\beta_{1h}^{g} } \\ {\alpha_{2h}^{g} } \\ \end{array} } \right] = 0 \hfill \\ \end{gathered} $$
(A8)

Substituting Eqs. (A6) and (A7) into Eq. (A8), we have

$$ \left[ {\begin{array}{*{20}c} {S^{d} \left( {\left[ {2:4} \right],:} \right)E^{d} \left( {S^{d} } \right)^{ - 1} \left( {S^{f} E^{f} + \frac{e^s}{{h^{f} }}P\left( {I - E^{f} } \right)} \right)} \\ {S^{g} \left( {\left[ {2:4} \right],:} \right)E^{g} \left( {S^{g} } \right)^{ - 1} \left( {S^{f} + \frac{e^s}{{h^{f} }}P\left( {I - E^{f} } \right)} \right)} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\alpha_{1}^{f} } \\ {\beta_{2}^{f} } \\ {\beta_{1}^{f} } \\ {\alpha_{2}^{f} } \\ \end{array} } \right] = 0 $$
(A9)

Then neglecting higher-order terms, we have

$$ \begin{gathered} S^{d} \left( {\left[ {2:4} \right],:} \right)E^{d} \left( {\left( {S^{d} } \right)^{ - 1} S^{f} E^{f} + \frac{e^s}{{h^{f} }}\left( {S^{d} } \right)^{ - 1} P\left( {I - E^{f} } \right)} \right) \hfill \\ = \left[ {\begin{array}{*{20}c} {W_{11} \xi } & {M_{12} \xi^{2} + N_{12} } & {M_{13} \xi^{2} + N_{13} } & {W_{14} \xi } \\ {M_{21} \xi^{2} + N_{21} } & {W_{22} \xi } & {W_{23} \xi } & {M_{24} \xi^{2} + N_{24} } \\ \end{array} } \right] \hfill \\ \end{gathered} $$
(A10)

where

$$ \begin{gathered} W_{11} = w_{11}^{d} cs^{f2} + w_{14}^{d} sn^{f2} + g_{{{11}}}^{d} ; \, W_{14} = w_{11}^{d} sn^{f2} + w_{14}^{d} cs^{f2} + g_{{{14}}}^{d} \hfill \\ W_{22} = w_{22}^{d} cs^{f1} + w_{23}^{d} sn^{f1} ; \, W_{23} = w_{22}^{d} sn^{f1} + w_{23}^{d} cs^{f1} \, \hfill \\ M_{12} = s_{12}^{d} cs^{f1} + s_{13}^{d} sn^{f1} + h_{{{12}}}^{d} ; \, M_{13} = s_{12}^{d} sn^{f1} + s_{13}^{d} cs^{f1} + h_{{{13}}}^{d} \hfill \\ M_{21} = s_{21}^{d} cs^{f2} + s_{24}^{d} sn^{f2} + h_{{{21}}}^{d} ; \, M_{24} = s_{21}^{d} sn^{f2} + s_{24}^{d} cs^{f2} + h_{{{24}}}^{d} \hfill \\ N_{12} = r_{12}^{d} cs^{f1} + r_{{1{3}}}^{d} sn^{f1} + k_{{{12}}}^{d} ; \, N_{13} = r_{12}^{d} sn^{f1} + r_{{1{3}}}^{d} cs^{f1} + k_{{{13}}}^{d} \hfill \\ N_{21} = r_{21}^{d} cs^{f2} + r_{24}^{d} sn^{f2} ; \, N_{24} = r_{21}^{d} sn^{{f{2}}} + r_{24}^{d} cs^{{f{2}}} \hfill \\ \end{gathered} $$

and

$$ \begin{aligned} w_{{11}}^{d} & = \;cs^{{f2}} q_{d} + cs^{{f1}} c_{{33}}^{d} {\text {i}}\eta _{{d1}} m_{{21}}^{d} ,w_{{14}} = sn^{{f1}} c_{{33}}^{d} \text{i}\eta _{{d1}} m_{{34}}^{d} + n_{{44}}^{d} sn^{{f2}} q_{d} \\ w_{{22}}^{d} & = \;sn^{{f2}} c_{{55}}^{d} m_{{12}}^{d} \text{i}\eta _{{d2}} - n_{{22}}^{d} sn^{{f1}} q_{d} ,{\mkern 1mu} w_{{23}} = - cs^{{f1}} q_{d} + c_{{55}}^{d} cs^{{f2}} \text{i}\eta _{{d2}} m_{{43}}^{d} \\ s_{{12}}^{d} & = \;cs^{{f2}} q_{d} m_{{12}}^{d} - n_{{22}}^{d} cs^{{f1}} c_{{13}}^{d} r_{1}^{d} + cs^{{f1}} c_{{33}}^{d} \text{i}\eta _{{d1}} l_{{22}}^{d} \\ {\mkern 1mu} s_{{13}}^{d} & = - c_{{13}}^{d} r_{1}^{d} sn^{{f1}} + l_{{33}}^{d} sn^{{f1}} c_{{33}}^{d} \text{i}\eta _{{d1}} + sn^{{f2}} q_{d} m_{{43}}^{d} \\ s_{{21}}^{d} & = sn^{{f2}} c_{{55}}^{d} \left( {\text{i}\eta _{{d2}} l_{{11}}^{d} + r_{2}^{d} } \right) - sn^{{f1}} q_{d} m_{{21}}^{d} \\ {\mkern 1mu} s_{{24}}^{d} & = - cs^{{f1}} q_{d} m_{{34}}^{d} + c_{{55}}^{d} cs^{{f2}} \left( {\text{i}\eta _{{d2}} l_{{44}}^{d} + r_{2}^{d} n_{{44}}^{d} } \right) \\ r_{{12}}^{d} & = n_{{22}}^{d} cs^{{f1}} c_{{33}}^{d} \text{i}\eta _{{d1}} ,{\mkern 1mu} r_{{21}}^{d} = sn^{{f2}} c_{{55}}^{d} \text{i}\eta _{{d2}} ,{\mkern 1mu} r_{{13}}^{d} = sn^{{f1}} c_{{33}}^{d} \text{i}\eta _{{d1}} \\ {\mkern 1mu} r_{{24}}^{d} & = c_{{55}}^{d} cs^{{f2}} \text{i}\eta _{{d2}} n_{{44}}^{d} \\ \end{aligned} $$
$$ \begin{gathered} l_{11}^{d} = \Delta_{1}^{d} r_{1}^{d} \left( {q_{d} - q_{f} } \right); \, l_{22}^{d} = - \Delta_{1}^{d} \left( {q_{d} r_{1}^{f} + \overline{c}_{33}^{f} \text{i}\eta_{f1} \left( {r_{1}^{d} } \right)^{2} + c_{13}^{f} r_{1}^{f} } \right) \hfill \\ l_{33}^{d} = \Delta_{2}^{d} r_{2}^{d} \left( {q_{d} - q_{f} } \right); \, l_{44}^{d} { = } - \Delta_{2}^{d} \left( {r_{2}^{f} q_{d} + c_{55}^{f} \text{i}\eta_{f2} \left( {r_{2}^{d} } \right)^{2} - c_{55}^{f} r_{2}^{f} } \right) \hfill \\ m_{12}^{d} = r_{1}^{f} - \Delta_{1}^{d} r_{1}^{d} \overline{c}_{33}^{f} \text{i}\eta_{f1} ; \, m_{21}^{d} = \Delta_{1}^{d} \left( { - q_{d} { + }q_{f} } \right)\hfill \\ m_{34}^{d} = - r_{2}^{f} + \Delta_{2}^{d} r_{2}^{d} \text{i}\eta_{f2} c_{55}^{f} ; \, m_{43}^{d} = \Delta_{2}^{d} \left( {q_{d} - q_{f} } \right) \hfill \\ n_{22}^{d} { = }\Delta_{1}^{d} \overline{c}_{33}^{f} \text{i}\eta_{f1} {; }\,n_{44}^{d} { = }\Delta_{2}^{d} c_{55}^{f} \text{i}\eta_{f2} \hfill \\ \end{gathered} $$
$$ \begin{gathered} a_{{{11}}}^{d} { = } - r_{1}^{d} r_{2}^{f} sn^{f2} , \, a_{14}^{d} { = } - r_{1}^{d} r_{2}^{f} \left( {cs^{f2} - 1} \right) \hfill \\ a_{22}^{d} { = }\left( {r_{1}^{d} } \right)^{2} sn^{f1} , \, a_{23}^{d} { = } - \left( {1 + cs^{f1} } \right)\left( {r_{1}^{d} } \right)^{2} \hfill \\ b_{12}^{d} { = }r_{1}^{d} sn^{f1} {, } \, b_{13}^{d} { = } - r_{1}^{d} \left( {1 + cs^{f1} } \right) \hfill \\ b_{21}^{d} { = }r_{2}^{f} sn^{f2} , \, b_{24}^{d} { = }r_{2}^{f} \left( {cs^{f2} - 1} \right)\xi \hfill \\ \end{gathered} $$
$$ \begin{gathered} g_{11}^{d} { = }\Delta_{1}^{d} cs^{f1} c_{33}^{d} \text{i}\eta_{d1} b_{21} ,\, g_{14}^{d} { = }\Delta_{1}^{d} b_{{{24}}} cs^{f1} c_{33}^{d} \text{i}\eta_{d1} \xi \hfill \\ g_{{{22}}}^{d} { = }\Delta_{1}^{d} \left( {sn^{f2} c_{55}^{d} \text{i}\eta_{d2} b_{12} + sn^{f1} q_{d} sn^{f1} } \right) \hfill \\ g_{{{23}}}^{d} { = }\Delta_{1}^{d} \left( {b_{12} sn^{f2} c_{55}^{d} \text{i}\eta_{d2} - sn^{f1} q_{d} \left( {1 + cs^{f1} } \right)} \right) \hfill \\ h_{12}^{d} { = }\Delta_{1}^{d} \left( {cs^{f2} q_{d} b_{12} + a_{22} + sn^{f1} cs^{f1} c_{13}^{d} r_{1}^{d} } \right) \, \hfill \\ h_{13}^{d} { = }\Delta_{1}^{d} \left( {cs^{f2} q_{d} b_{13} - \left( {1 + cs^{f1} } \right)cs^{f1} c_{13}^{d} r_{1}^{d} + cs^{f1} c_{33}^{d} \text{i}\eta_{d1} a_{{{23}}} } \right)\hfill \\ h_{21}^{d} { = }\Delta_{1}^{d} \left( {sn^{f2} c_{55}^{d} \text{i}\eta_{d2} a_{11} - sn^{f1} q_{d} b_{21} } \right) \hfill \\ h_{{{24}}}^{d} { = }\Delta_{1}^{d} \left( {a_{{1{4}}} sn^{f2} c_{55}^{d} \text{i}\eta_{d2} - b_{{{24}}} sn^{f1} q_{d} } \right) \hfill \\ k_{12}^{d} { = } - \Delta_{1}^{d} sn^{f1} cs^{f1} c_{33}^{d} \text{i}\eta_{d1},\, k_{13}^{d} { = }\Delta_{1}^{d} \left( {1 + cs^{f1} } \right)cs^{f1} c_{33}^{d} \text{i}\eta_{d1} \hfill \\ \end{gathered} $$

Obviously, for the last two equations in Eq. (A9), we have

$$ \begin{gathered} S^{g} \left( {\left[ {2:4} \right],:} \right)E^{g} \left( {\left( {S^{g} } \right)^{ - 1} S^{f} E^{f} + \left( {S^{g} } \right)^{ - 1} P\left( {I - E^{f} } \right)} \right) \hfill \\ = \left[ {\begin{array}{*{20}c} {W_{31} \xi } & {M_{32} \xi^{2} + N_{32} } & {M_{33} \xi^{2} + N_{33} } & {W_{34} \xi } \\ {M_{41} \xi^{2} + N_{41} } & {W_{42} \xi } & {W_{43} \xi } & {M_{44} \xi^{2} + N_{44} } \\ \end{array} } \right] \hfill \\ \end{gathered} $$
(A11)

The coefficients in Eq. (A11) can also be obtained easily by the replacement of material constants in Eq. (A10). From the condition for a nontrivial solution, we have

$$ \begin{gathered} \left| {\begin{array}{*{20}c} {W_{11} \xi } & {M_{12} \xi^{2} + N_{12} } & {M_{13} \xi^{2} + N_{13} } & {W_{14} \xi } \\ {M_{21} \xi^{2} + N_{21} } & {W_{22} \xi } & {W_{23} \xi } & {M_{24} \xi^{2} + N_{24} } \\ {W_{31} \xi } & {M_{32} \xi^{2} + N_{32} } & {M_{33} \xi^{2} + N_{33} } & {W_{34} \xi } \\ {M_{41} \xi^{2} + N_{41} } & {W_{42} \xi } & {W_{43} \xi } & {M_{44} \xi^{2} + N_{44} } \\ \end{array} } \right| \hfill \\ = W\xi^{2} + \left( {N_{13} N_{32} - N_{12} N_{33} } \right)\left( {N_{21} N_{44} - N_{24} N_{41} } \right) = 0 \hfill \\ \end{gathered} $$
(A12)

where the value of W can be obtained by numerical calculation software. Substituting Eqs. (27) and (34) into the expressions for N12, N13, N32, and N33, we have

$$ \begin{gathered} N_{12} = N_{12}^{0} + N_{12}^{\delta } \delta_{f} + N_{12}^{\xi } \xi^{2} , \, N_{13} = N_{13}^{0} + N_{13}^{\delta } \delta_{f} + N_{13}^{\xi } \xi^{2} \hfill \\ N_{32} = N_{32}^{0} + N_{32}^{\delta } \delta_{f} + N_{32}^{\xi } \xi^{2} , \, N_{{{3}3}} = N_{33}^{0} + N_{33}^{\delta } \delta_{f} + N_{33}^{\xi } \xi^{2} \hfill \\ \end{gathered} $$
(A13)

where

$$ \begin{gathered} N_{12}^{\xi } = sn^{f0} c_{33}^{d} \text{i}sn^{f0} K_{d} , \, N_{13}^{\xi } = cs^{f0} c_{33}^{d} \text{i}sn^{f0} K_{d} \hfill \\ N_{12}^{\delta } = \text{i}\left( \begin{gathered} cs^{f0} \overline{c}_{33}^{f} \left( {cs^{f0} + \eta_{f}^{0} \text{i}h^{f} sn^{f0} } \right) + r_{12}^{d0} h^{f} sn^{f0} + r_{13}^{d0} h^{f} cs^{f0} \hfill \\ - e^s\cos \left( {2\eta_{f0} h^{f} } \right) + \eta_{d}^{0} cs^{f0} sn^{f0} c_{33}^{d} \text{i} + sn^{f0} c_{33}^{d} sn^{f0} \mu^{d} \hfill \\ \end{gathered} \right)\hfill \\ N_{13}^{\delta } = \text{i}\left( \begin{gathered} sn^{f0} \overline{c}_{33}^{f} \left( {cs^{f0} + \eta_{f}^{0} \text{i}h^{f} sn^{f0} } \right) + r_{12}^{d0} h^{f} cs^{f0} + r_{13}^{d0} h^{f} sn^{f0} \hfill \\ + e^{s} \left( {1 + 2cs^{f0} } \right)sn^{f0} + \eta_{d}^{0} cs^{f0} cs^{f0} c_{33}^{d} \text{i} + cs^{f0} c_{33}^{d} sn^{f0} \mu^{d} \hfill \\ \end{gathered} \right) \hfill \\ \end{gathered} $$

and the expressions for \(N_{32}^{\delta } ,N_{33}^{\delta } ,N_{32}^{\xi }\) and \(N_{{3{3}}}^{\xi }\) can be obtained by replacement of material constants as before. Then substituting Eq. (A13) into Eq. (A12) and retaining the terms of \(\xi\) up to quadratic and the terms of \(\delta_{f}\) linear, we have

$$ U + W\xi^{2} { + }HQ\delta_{f} + HR\xi^{2} = 0 $$
(A14)

where

$$ \begin{gathered} L = N_{21} N_{44} - N_{24} N_{41} \hfill \\ U = N_{13}^{0} N_{32}^{0} - N_{12}^{0} N_{33}^{0} \hfill \\ Q{ = }N_{13}^{0} N_{32}^{\delta } { + }N_{32}^{0} N_{13}^{\delta } - N_{{1{2}}}^{0} N_{{3{3}}}^{\delta } { - }N_{{3{3}}}^{0} N_{{1{2}}}^{\delta } \hfill \\ R{ = }N_{13}^{0} N_{32}^{\varepsilon } { + }N_{32}^{0} N_{13}^{\varepsilon } - N_{{1{2}}}^{0} N_{{3{3}}}^{\varepsilon } { - }N_{{3{3}}}^{0} N_{{1{2}}}^{\varepsilon } \hfill \\ \end{gathered} $$

We can also find that Eq. (12) is equivalent to

$$ U = N_{13}^{0} N_{32}^{0} - N_{12}^{0} N_{33}^{0} { = 0} $$

It is well understood that our theory reduce to pure thickness vibration when the in-plane wavenumbers vanish.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Ge, Y., Xu, X. et al. An Approximation for Rapid Simulation of Thin-Film Bulk Acoustic Resonators (FBARs) with Sandwich-Layered Structure. Acta Mech. Solida Sin. 36, 293–305 (2023). https://doi.org/10.1007/s10338-022-00374-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-022-00374-9

Keywords

Navigation