Skip to main content

Advertisement

Log in

Effect of Hydrogen on Dislocation Nucleation and Motion: Nanoindentation Experiment and Discrete Dislocation Dynamics Simulation

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The hydrogen effect on the nucleation and motion of dislocations in single-crystal bcc Fe with (110) surface was investigated by both nanoindentation experiments and discrete dislocation dynamics (DDD) simulation. The results of nanoindentation experiments showed that the pop-in load decreased evidently for the electrochemical hydrogen charging specimen, indicating that the dislocation nucleation strength might be reduced by hydrogen. In addition, the decrease of hardness due to hydrogen charging was also captured, implying that the dislocation motion might be promoted by hydrogen. By incorporating the effect of hydrogen on dislocation core energy, a DDD model was specifically proposed to investigate the influence of hydrogen on dislocation nucleation and motion. The results of DDD simulation revealed that under the effect of hydrogen, the dislocation nucleation strength is decreased and the motion of dislocation is promoted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Robertson IM, Sofronis P, Nagao A, Martin ML, Wang S, Gross DW, Nygren KE. Hydrogen embrittlement understood. Metall Mater Trans A Phys Metall Mater Sci. 2015;46:2323–41. https://doi.org/10.1007/s11661-015-2836-1.

    Article  Google Scholar 

  2. Robertson IM. The effect of hydrogen on dislocation dynamics. Eng Fract Mech. 1999;68:671–92. https://doi.org/10.1016/S0013-7944(01)00011-X.

    Article  Google Scholar 

  3. Hirth JP. Effects of hydrogen on the properties of iron and steel. Metall Trans A. 1980;11:861–90. https://doi.org/10.1007/BF02654700.

    Article  Google Scholar 

  4. Nagumo M. Function of hydrogen in embrittlement of high-strength steels. ISIJ Int. 2001;41:590–8. https://doi.org/10.2355/isijinternational.41.590.

    Article  Google Scholar 

  5. Birnbaum HK, Sofronis P. Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture. Mater Sci Eng A. 1994;176:191–202. https://doi.org/10.1016/0921-5093(94)90975-X.

    Article  Google Scholar 

  6. John CS, Gerberich WW. Effect of loading mode on hydrogen embrittlement. Met Trans. 1973;4:589–94. https://doi.org/10.1007/BF02648714.

    Article  Google Scholar 

  7. Jang WK, Kim SS, Shin KS. Effect of cathodic hydrogen charging on mechanical properties of Al 8090. Scr Mater. 1999;40:503–8. https://doi.org/10.1016/S1359-6462(98)00472-2.

    Article  Google Scholar 

  8. Smith GC, Wasserstoff D. The influence of hydrogen on the plastic deformation ductility, and fracture of nickel in tension. Acta Metall. 1963;11:165–78.

    Article  Google Scholar 

  9. Abraham DP, Altstetter CJ. The effect of hydrogen on the yield and flow stress of an austenitic stainless steel. Metall Mater Trans A. 1995;26:2849–58. https://doi.org/10.1007/BF02669643.

    Article  Google Scholar 

  10. Matsui H, Kimura H, Kimura A. The effect of hydrogen on the mechanical properties of high purity iron III. The dependence of softening in specimen size and charging current density. Mater Sci Eng. 1979;40:227–34. https://doi.org/10.1016/0025-5416(79)90193-9.

    Article  Google Scholar 

  11. Matsui H, Kimura H, Moriya S. The effect of hydrogen on the mechanical properties of high purity iron I. Softening and hardening of high purity iron by hydrogen charging during tensile deformation. Mater Sci Eng. 1979;40:207–16. https://doi.org/10.1016/0025-5416(79)90191-5.

    Article  Google Scholar 

  12. Barnoush A, Vehoff A. Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation. Acta Mater. 2010;58:5274–85. https://doi.org/10.1016/j.actamat.2010.05.057.

    Article  Google Scholar 

  13. Kheradmand N, Dake J, Barnoush A, Vehoff H. Novel methods for micromechanical examination of hydrogen and grain boundary effects on dislocations. Philos Mag. 2012;92:3216–30. https://doi.org/10.1080/14786435.2012.690939.

    Article  Google Scholar 

  14. Rogne BRS, Kheradmand N, Deng Y, Barnoush A. In situ micromechanical testing in environmental scanning electron microscope: A new insight into hydrogen-assisted cracking. Acta Mater. 2018;144:257–68. https://doi.org/10.1016/j.actamat.2017.10.037.

    Article  Google Scholar 

  15. Deutges M, Knorr I, Borchers C, Volkert CA, Kirchheim R. Influence of hydrogen on the deformation morphology of vanadium (1 0 0) micropillars in the \(\alpha \)-phase of the vanadium-hydrogen system. Scr Mater. 2013;68:71–4. https://doi.org/10.1016/j.scriptamat.2012.09.020.

    Article  Google Scholar 

  16. Chen YZ, Barth YP, Deutges M, BorchersC Liu F, Kirchheim R. Increase in dislocation density in cold-deformed Pd using H as a temporary alloying addition. Scr Mater. 2013;68:743–6. https://doi.org/10.1016/j.scriptamat.2013.01.005.

    Article  Google Scholar 

  17. Zhao Y, Seok MY, Choi IC, Lee YH, Park SJ, Ramamurty U, Suh JY, Jang J. The role of hydrogen in hardening/softening steel: Influence of the charging process. Scr Mater. 2015;107:46–9. https://doi.org/10.1016/j.scriptamat.2015.05.017.

    Article  Google Scholar 

  18. Barnoush A, Asgari M, Johnsen R. Resolving the hydrogen effect on dislocation nucleation and mobility by electrochemical nanoindentation. Scr Mater. 2012;66:414–7. https://doi.org/10.1016/j.scriptamat.2011.12.004.

    Article  Google Scholar 

  19. Barnoush A, Dake J, Kheradmand N, Vehoff H. Examination of hydrogen embrittlement in FeAl by means of in situ electrochemical micropillar compression and nanoindentation techniques. Intermetallics. 2010;18:1385–9. https://doi.org/10.1016/j.intermet.2010.01.001.

    Article  Google Scholar 

  20. Barnoush A, Kheradmand N, Hajilou T. Correlation between the hydrogen chemical potential and pop-in load during in situ electrochemical nanoindentation. Scr Mater. 2015;108:76–9. https://doi.org/10.1016/j.scriptamat.2015.06.021.

    Article  Google Scholar 

  21. Cottrell AH, Bilby BA. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc Sect A. 1949;62:49–62. https://doi.org/10.1088/0370-1298/62/1/308.

    Article  Google Scholar 

  22. Xie D, Li S, Li M, Wang Z, GumbschP Sun J, Ma E, Li J, Shan Z. Hydrogenated vacancies lock dislocations in aluminium. Nat Commun. 2016;7:1–7. https://doi.org/10.1038/ncomms13341.

    Article  Google Scholar 

  23. Song J, Curtin WA. Mechanisms of hydrogen-enhanced localized plasticity: An atomistic study using \(\alpha \)-Fe as a model system. Acta Mater. 2014;68:61–9. https://doi.org/10.1016/j.actamat.2014.01.008.

    Article  Google Scholar 

  24. Ferreira PJ, Robertson IM, Birnbaum HK. Hydrogen effects on the interaction between dislocations. Acta Mater. 1998;46:1749–57. https://doi.org/10.1016/S1359-6454(97)00349-2.

    Article  Google Scholar 

  25. Sills RB, Cai W. Free energy change of a dislocation due to a Cottrell atmosphere. Philos Mag. 2018;98:1491–510. https://doi.org/10.1080/14786435.2018.1441560.

    Article  Google Scholar 

  26. Zhu YX, Li ZH, Huang MS, Fan HD. Study on interactions of an edge dislocation with vacancy-H complex by atomistic modelling. Int J Plast. 2017;92:31–44. https://doi.org/10.1016/j.ijplas.2017.03.003.

    Article  Google Scholar 

  27. Wang S, Hashimoto N, Ohnuki S. Hydrogen-induced change in core structures of 110 [111] edge and 110 [111] screw dislocations in iron. Sci Rep. 2013;3:10–3. https://doi.org/10.1038/srep02760.

    Article  Google Scholar 

  28. Lu G, Zhang Q, Kioussis N, Kaxiras E. Hydrogen-enhanced local plasticity in aluminum: An ab initio study. Phys Rev Lett. 2001;87:955011–4. https://doi.org/10.1103/PhysRevLett.87.095501.

    Article  Google Scholar 

  29. Katzarov IH, Pashov DL, Paxton AT. Hydrogen embrittlement I Analysis of hydrogen-enhanced localized plasticity: Effect of hydrogen on the velocity of screw dislocations in \(\alpha \) -Fe. Phys Rev Mater. 2017;1:033602. https://doi.org/10.1103/PhysRevMaterials.1.033602.

    Article  Google Scholar 

  30. Barnoush A, Bies C, Vehoff H. In situ electrochemical nanoindentation of FeAl (100) single crystal: Hydrogen effect on dislocation nucleation. J Mater Res. 2009;24:1105–13. https://doi.org/10.1557/jmr.2009.0084.

    Article  Google Scholar 

  31. Zhao Y, Choi IC, Seok MY, Ramamurty U, Suh JY, Jang J. Hydrogen-induced hardening and softening of Ni-Nb-Zr amorphous alloys: Dependence on the Zr content. Scr Mater. 2014;93:56–9. https://doi.org/10.1016/j.scriptamat.2014.08.029.

    Article  Google Scholar 

  32. Lu X, Ma Y, Zamanzade M, Deng Y, Wang D, Bleck W, Song WW, Barnoush A. Insight into hydrogen effect on a duplex medium-Mn steel revealed by in-situ nanoindentation test. Int J Hydrogen Energy. 2019;44:20545–51. https://doi.org/10.1016/j.ijhydene.2019.04.290.

    Article  Google Scholar 

  33. Lee DH, Lee JA, Seok MY, Baek UB, Nahm SH, Jang J. Stress-dependent hardening-to-softening transition of hydrogen effects in nanoindentation of a linepipe steel. Int J Hydrogen Energy. 2014;39:1897–902. https://doi.org/10.1016/j.ijhydene.2013.11.060.

    Article  Google Scholar 

  34. Ayas C, Van Dommelen JAW, Deshpande VS. Climb-enabled discrete dislocation plasticity. J Mech Phys Solids. 2014;62:113–36. https://doi.org/10.1016/j.jmps.2013.09.019.

    Article  MathSciNet  MATH  Google Scholar 

  35. Keralavarma SM, Benzerga AA. High-temperature discrete dislocation plasticity. J Mech Phys Solids. 2015;82:1–22. https://doi.org/10.1016/j.jmps.2015.05.003.

    Article  MathSciNet  Google Scholar 

  36. Wang J, Huang M, Zhu Y, Liang S, Li Z. Vacancy diffusion coupled discrete dislocation dynamic modeling of compression creep of micro-pillars at elevated temperature. Int J Solids Struct. 2020;193–194:375–92. https://doi.org/10.1016/j.ijsolstr.2020.02.024.

    Article  Google Scholar 

  37. Li Z, Hou C, Huang M, Ouyang C. Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall-Petch effect. Comput Mater Sci. 2009;46:1124–34. https://doi.org/10.1016/j.commatsci.2009.05.021.

    Article  Google Scholar 

  38. Huang M, Li Z, Tong J. The influence of dislocation climb on the mechanical behavior of polycrystals and grain size effect at elevated temperature. Int J Plast. 2014;61:112–27. https://doi.org/10.1016/j.ijplas.2014.06.002.

    Article  Google Scholar 

  39. Quek SS, Wu Z, Zhang YW, Srolovitz DJ. Polycrystal deformation in a discrete dislocation dynamics framework. Acta Mater. 2014;75:92–105. https://doi.org/10.1016/j.actamat.2014.04.063.

    Article  Google Scholar 

  40. Wei DA, Zaiser M, Feng Z, Kang G, Fan H, Zhang X. Effects of twin boundary orientation on plasticity of bicrystalline copper micropillars: A discrete dislocation dynamics simulation study. Acta Mater. 2019;176:289–96. https://doi.org/10.1016/j.actamat.2019.07.007.

    Article  Google Scholar 

  41. Fan H, Aubry S, Arsenlis A, El-Awady JA. The role of twinning deformation on the hardening response of polycrystalline magnesium from discrete dislocation dynamics simulations. Acta Mater. 2015;92:126–39. https://doi.org/10.1016/j.actamat.2015.03.039.

    Article  Google Scholar 

  42. Bertin N, Sills RB, Cai W. Frontiers in the Simulation of Dislocations. Annu Rev Mater Res. 2020;50:437–64. https://doi.org/10.1146/annurev-matsci-091819-015500.

    Article  Google Scholar 

  43. Huang Tong J, Li Z. A study of fatigue crack tip characteristics using discrete dislocation dynamics. Int J Plast. 2014;54:229–46. https://doi.org/10.1016/j.ijplas.2013.08.016.

    Article  Google Scholar 

  44. Liang S, Zhu Y, Huang M, Li Z. Studying dislocation-induced shielding effect on the crack-tip in polycrystal by discrete dislocation dynamics. Int J Solids Struct. 2019;156–157:148–62. https://doi.org/10.1016/j.ijsolstr.2018.08.012.

    Article  Google Scholar 

  45. Liang S, Zhu Y, Huang M, Li Z. Simulation on crack propagation vs. crack-tip dislocation emission by XFEM-based DDD scheme. Int J Plast. 2019;114:87–105. https://doi.org/10.1016/j.ijplas.2018.10.010.

    Article  Google Scholar 

  46. Huang M, Li Z. The key role of dislocation dissociation in the plastic behaviour of single crystal nickel-based superalloy with low stacking fault energy: Three-dimensional discrete dislocation dynamics modelling. J Mech Phys Solids. 2013;61:2454–72. https://doi.org/10.1016/j.jmps.2013.07.011.

    Article  Google Scholar 

  47. Huang S, Huang M, Li Z. Effect of interfacial dislocation networks on the evolution of matrix dislocations in nickel-based superalloy. Int J Plast. 2018;110:1–18. https://doi.org/10.1016/j.ijplas.2018.06.005.

    Article  Google Scholar 

  48. Gu Y, El-Awady JA. Quantifying the effect of hydrogen on dislocation dynamics: A three-dimensional discrete dislocation dynamics framework. J Mech Phys Solids. 2018;112:491–507. https://doi.org/10.1016/j.jmps.2018.01.006.

    Article  MathSciNet  Google Scholar 

  49. Yu H, Cocks A, Tarleton E. Discrete dislocation plasticity HELPs understand hydrogen effects in bcc materials. J Mech Phys Solids. 2019;123:41–60. https://doi.org/10.1016/j.jmps.2018.08.020.

    Article  MathSciNet  Google Scholar 

  50. Nix WD, Gao H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J Mech Phys Solids. 1998;46:411–25. https://doi.org/10.1016/S0022-5096(97)00086-0.

    Article  MATH  Google Scholar 

  51. Feng G, Nix WD. Indentation size effect in MgO. Scr Mater. 2004;51:599–603. https://doi.org/10.1016/j.scriptamat.2004.05.034.

    Article  Google Scholar 

  52. Durst K, Backes B, Göken M. Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr Mater. 2005;52:1093–7. https://doi.org/10.1016/j.scriptamat.2005.02.009.

    Article  Google Scholar 

  53. Liu W, Chen L, Cheng L, Yu L, Yi X, Gao H, Duan H. Model of nanoindentation size effect incorporating the role of elastic deformation. J Mech Phys Solids. 2019;126:245–55. https://doi.org/10.1016/j.jmps.2019.02.015.

    Article  Google Scholar 

  54. Hirth JP, Lothe J. Theory of Dislocations. 1968.

  55. Yu H, Katzarov IH, Paxton AT, Cocks ACF, Tarleton E. Influence of hydrogen core force shielding on dislocation junctions in iron. Phys Rev Mater. 2020;4:1–16. https://doi.org/10.1103/PhysRevMaterials.4.033607.

    Article  Google Scholar 

  56. Kimizuka H, Ogata S. Slow diffusion of hydrogen at a screw dislocation core in \(\alpha \)-iron. Phys Rev B - Condens Matter Mater Phys. 2011;84:1–6. https://doi.org/10.1103/PhysRevB.84.024116.

    Article  Google Scholar 

  57. Itakura M, Kaburaki H, Yamaguchi M, Okita T. The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study. Acta Mater. 2013;61:6857–67. https://doi.org/10.1016/j.actamat.2013.07.064.

    Article  Google Scholar 

  58. Clouet E. Elastic energy of a straight dislocation and contribution from core tractions. Philos Mag. 2009;89:1565–84. https://doi.org/10.1080/14786430902976794.

    Article  Google Scholar 

  59. Clouet E, Ventelon L, Willaime F. Dislocation core energies and core fields from first principles. Phys Rev Lett. 2009;102:1–4. https://doi.org/10.1103/PhysRevLett.102.055502.

    Article  Google Scholar 

  60. Hu Y, Szajewski BA, Rodney D, Curtin WA. Atomistic dislocation core energies and calibration of non-singular discrete dislocation dynamics. Model Simul Mater Sci Eng. 2020;28. https://doi.org/10.1088/1361-651X/ab5489.

  61. Cai W, Arsenlis A, Weinberger CR, Bulatov VV. A non-singular continuum theory of dislocations. J Mech Phys Solids. 2006;54:561–87. https://doi.org/10.1016/j.jmps.2005.09.005.

    Article  MathSciNet  MATH  Google Scholar 

  62. Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV. Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng. 2007;15:553–95. https://doi.org/10.1088/0965-0393/15/6/001.

    Article  Google Scholar 

  63. Yu H, Cocks ACF, Tarleton E. Simulating hydrogen in fcc materials with discrete dislocation plasticity. Int J Hydrogen Energy. 2020; 1–13. https://doi.org/10.1016/j.ijhydene.2020.01.118.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11632007 and 11802099).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaxin Zhu or Zhenhuan Li.

Appendix A

Appendix A

The interaction between two dislocation segments with different core widths a and b is derived here. In the non-singular dislocation theory, the distribution of the Burgers vector is isotropic, which is formulated as [61]:

$$\begin{aligned} {\varvec{b}}=\int {{\varvec{g}}\left( {{\varvec{x}}} \right) } \mathrm{d^{3}}{\varvec{x}} \end{aligned}$$
(A1)

where \({\varvec{g}}\left( {{\varvec{x}}} \right) ={\varvec{b}}\tilde{{w}}_{a} \left( {{\varvec{x}}} \right) ={\varvec{b}}\tilde{{w}}_{a} \left( r \right) \) is the Burgers vector density function, and \(\tilde{{w}}\left( r \right) \) is the Burgers vector distribution function within the dislocation core width a. \(w_{a} \left( x \right) \) is defined as the convolution of \(\tilde{{w}}_{a} \left( {{\varvec{x}}} \right) \) with itself. Under the assumption that \(R_{a} \left( {{\varvec{x}}} \right) =R\left( {{\varvec{x}}} \right) *w_{a} \left( {{\varvec{x}}} \right) =\sqrt{R\left( {{\varvec{x}}} \right) ^{2}+a^{2}} \), \(w_{a} \left( {{\varvec{x}}} \right) \) can be derived as:

$$\begin{aligned} w_{a} \left( {{\varvec{x}}} \right) =w_{a} \left( r \right) =\frac{15}{8\pi a^{3}\left[ {\left( {r/a} \right) ^{2}+1} \right] ^{7/2}} \end{aligned}$$
(A2)

where \(R\left( {{\varvec{x}}} \right) =\sqrt{x^{2}+y^{2}+z^{2}} \). For a dislocation loop with the isotropic distribution \(g\left( {{\varvec{x}}} \right) \), its stress fields can be expressed as:

$$\begin{aligned} \mathbf {\tilde{{\sigma }}}_{\alpha \beta } \left( {{\varvec{x}}} \right) =\oint _C {{\varvec{A}}}_{\alpha \beta ijklm} \partial _{i} \partial _{j} \partial _{k} \left[ {R\left( {{\varvec{x}}-{\varvec{x}}''} \right) g_{m} \left( {{\varvec{x}}''{ \mathbf{-}}{\varvec{x}}'} \right) \mathrm{d}^{3}{\varvec{x}}''} \right] \mathrm{d}{\varvec{x}}_{l}^{'} \end{aligned}$$
(A3)

where \({\varvec{A}}_{\alpha \beta ijklm} \) is the elastic tensor. For a dislocation with Burgers vector distribution \(\tilde{{w}}\left( r \right) \), the stress acting on another dislocation with the same Burgers vector distribution is:

$$\begin{aligned} \mathbf {\sigma }_{\alpha \beta } \left( {{\varvec{x}}} \right)= & {} \mathbf {\tilde{{\sigma }}}_{\alpha \beta } \left( {{\varvec{x}}} \right) *\tilde{{w}}\left( {{\varvec{x}}} \right) \nonumber \\= & {} \frac{\mu }{8\pi }\oint _C {\partial _{i} \partial _{p} } \partial _{p} R_{a} \left[ {{\varvec{b}}_{m} \mathbf {\varepsilon }_{im\alpha } \mathrm{d}{\varvec{x}}_{\beta }^{'} +{\varvec{b}}_{m} \mathbf {\varepsilon }_{im\beta } \mathrm{d}{\varvec{x}}_{\alpha }^{'} } \right] \nonumber \\&+\frac{\mu }{4\pi \left( {1-\nu } \right) }\oint _C {{\varvec{b}}_{m} \mathbf {\varepsilon }_{imk} \left( {\partial _{i} \partial _{\alpha } \partial _{\beta } R_{a} -\delta _{\alpha \beta } \partial _{i} \partial _{p} \partial _{p} R_{a} } \right) \mathrm{d}{\varvec{x}}_{k}^{'} } \end{aligned}$$
(A4)

Since \(R_{a} =R\left( {{\varvec{x}}} \right) *\tilde{{w}}{ }_{a}\left( {{\varvec{x}}} \right) *\tilde{{w}}_{a} \left( {{\varvec{x}}} \right) \) is obtained by the second convolution of \(R_{a} \) and \(\tilde{{w}}\left( {{\varvec{x}}} \right) \), the stress field \(\mathbf {\sigma }_{\alpha \beta } \left( {{\varvec{x}}} \right) \) can be obtained analytically and used to calculate the interaction stress between two dislocations with the same core width a. However, because the convolution \(R_{ab} =R\left( {{\varvec{x}}} \right) *w{ }_{a}\left( {\mathbf {x}} \right) *w_{b} \left( {{\varvec{x}}} \right) \) does not have an analytical expression, the interaction stress between two dislocations with different core widths a and b cannot be obtained analytically. Therefore, how to obtain the interaction force between two dislocation segments with different core widths a and b is transformed into a mathematical problem to determine the convolution of \(\tilde{{w}}{ }_{a}\left( {{\varvec{x}}} \right) *\tilde{{w}}_{b} \left( {{\varvec{x}}} \right) \).

According to the convolution theorem, the Fourier transform of a convolution of two functions is the product of their Fourier transforms:

$$\begin{aligned} F_{\omega } \left( {\tilde{{w}}{ }_{a}\left( {{\varvec{x}}} \right) *\tilde{{w}}_{b} \left( {{\varvec{x}}} \right) } \right)= & {} F_{\omega } \left( {\tilde{{w}}{ }_{a}\left( r \right) } \right) F_{\omega } \left( {\tilde{{w}}_{b} \left( r \right) } \right) =\sqrt{F_{\omega } \left( {w{ }_{a}\left( r \right) } \right) F_{\omega } \left( {w_{b} \left( r \right) } \right) } \nonumber \\= & {} \sqrt{\frac{\left( {a\omega } \right) ^{2}K_{2} \left( {a\omega } \right) }{2}\frac{\left( {b\omega } \right) ^{2}K_{2} \left( {b\omega } \right) }{2}} \end{aligned}$$
(A5)

where \(K_{2} \left( {a\omega } \right) \) and \(K_{2} \left( {b\omega } \right) \) are the Bessel functions of the second kind. The numerical solution of \(\tilde{{w}}{ }_{a}\left( {{\varvec{x}}} \right) *\tilde{{w}}_{b} \left( {{\varvec{x}}} \right) \) can be obtained by performing the inverse Fourier transform in Eq. (A5). However, in the DDD simulation, it is intractable to compute the numerical solution \(\tilde{{w}}{ }_{a}\left( {{\varvec{x}}} \right) *\tilde{{w}}_{b} \left( {{\varvec{x}}} \right) \) for every two dislocation segments in every time step, and thus an approximate analytical solution \(w_{c} \left( {{\varvec{x}}} \right) \approx \tilde{{w}}{ }_{a}\left( {{\varvec{x}}} \right) *\tilde{{w}}_{b} \left( {{\varvec{x}}} \right) \) is adopted here. In other words, the convolution of \(\tilde{{w}}{ }_{a}\left( {{\varvec{x}}} \right) *\tilde{{w}}_{b} \left( {{\varvec{x}}} \right) \) is replaced by the convolution of \(\tilde{{w}}{ }_{c}\left( {{\varvec{x}}} \right) *\tilde{{w}}_{c} \left( {{\varvec{x}}} \right) \). This means the interaction force between two dislocation segments with core widths a and b is replaced by the interaction force between two dislocation segments with the same core width c. The value of c is assumed to be the function \(c=f\left( {a,b} \right) \), which is fitted with the numerical solution of \(\tilde{{w}}{ }_{a}\left( {{\varvec{x}}} \right) *\tilde{{w}}_{b} \left( {{\varvec{x}}} \right) \) in the range \(0.5\le \gamma \le 0.99\) with \(\gamma \text{= }\min \left( {a,b} \right) /\max \left( {a,b} \right) \).

Fig. 6
figure 6

Numerical solution of \(\tilde{{w}}{ }_{a}\left( r \right) *\tilde{{w}}_{b} \left( r \right) \) and approximate solution \(w_{c} \left( r \right) \)

The numerical solution of \(\tilde{{w}}{ }_{a}\left( r \right) *\tilde{{w}}_{b} \left( r \right) \) and the approximate analytical solution \(w_{c} \left( r \right) \) with \(\gamma =0.5\) are compared in Fig. 6, which shows that \(w_{c} \left( r \right) \) is in good agreement with the numerical solution of \(\tilde{{w}}{ }_{a}\left( r \right) *\tilde{{w}}_{b} \left( r \right) \). According to the method above, the function \(c=f\left( {a,b} \right) \) can be obtained as:

$$\begin{aligned} c=\max \left( {a,b} \right) \left( {P_{1} \gamma ^{2}+P_{2} \gamma +P_{3} } \right) \end{aligned}$$
(A6)

where \(P_{1} =0.1462\), \(P_{2} =0.2191\) and \(P_{3} =0.6352\) are the fitting parameters. After c is determined, the interaction stress between two dislocations with different core widths a and b can be calculated by Eq. (A4) with \(R_{a} \) replaced by \(R_{c} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhao, L., Huang, M. et al. Effect of Hydrogen on Dislocation Nucleation and Motion: Nanoindentation Experiment and Discrete Dislocation Dynamics Simulation. Acta Mech. Solida Sin. 35, 1–14 (2022). https://doi.org/10.1007/s10338-021-00261-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00261-9

Keywords

Navigation