Skip to main content
Log in

Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effects of hydrogen on the mechanical response of pure iron with randomly distributed hydrogen atoms under nanoindentation were systematically investigated by molecular dynamics simulations with the aim to further understand hydrogen embrittlement mechanism in the steels. The simulations results revealed that, for the three models with [001], [110] and [111] surface normal, hydrogen reduced the critical load of the pop-in event, promoted the dislocation slipping and reduced the plastic region size and dislocation density around the indenter compared to the hydrogen free model. Meanwhile, the different mechanical responses of the three models with different surface normal were further explained in the perspective of Schmid factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Barnoush, H. Vehoff, Scr. Mater. 55, 195 (2006)

    CAS  Google Scholar 

  2. N.T.Y. Katz, W.W. Gerberich, Eng. Fract. Mech. 68, 619 (2001)

    Google Scholar 

  3. A. Barnoush, H. Vehoff, Corros. Sci. 50, 259 (2008)

    CAS  Google Scholar 

  4. L.B. Pfeil, Roy. Soc. Proc. A 112, 182 (1926)

    CAS  Google Scholar 

  5. C.D. Beachem, Metall. Mater. Trans. B 3, 441 (1972)

    Google Scholar 

  6. P. Gong, I. Katzarov, J. Nutter, A.T. Paxton, B. Wynne, W.M. Rainforth, Scr. Mater. 194, 113683 (2021)

    CAS  Google Scholar 

  7. K. Tomatsu, T. Omura, Y. Nishiyama, Y. Todaka, ISIJ Int. 56, 2298 (2016)

    CAS  Google Scholar 

  8. V. Gaspard, G. Kermouche, D. Delafosse, A. Barnoush, Mater. Sci. Eng. A 604, 86 (2014)

    CAS  Google Scholar 

  9. S. Wang, S. Ohnuki, N. Hashimoto, K. Chiba, Mater. Sci. Eng. A 560, 332 (2013)

    CAS  Google Scholar 

  10. I.H. Katzarov, D.L. Pashov, A.T. Paxton, Phys. Rev. Mater. 1, 033602 (2017)

    Google Scholar 

  11. K. Zhao, J. He, A.E. Mayer, Z. Zhang, Acta Mater. 148, 18 (2018)

    CAS  Google Scholar 

  12. Z. Zheng, S. Liang, Y. Zhu, M. Huang, Z. Li, Mech. Mater. 140, 103221 (2020)

    Google Scholar 

  13. K. Zhao, A.E. Mayer, J. He, Z. Zhang, Int. J. Mech. Sci. 148, 158 (2018)

    Google Scholar 

  14. H.T. Luu, S.L. Dang, T.-V. Hoang, N. Gunkelmann, Appl. Surf. Sci. 551, 149221 (2021)

    CAS  Google Scholar 

  15. X. Zhou, B. Ouyang, W.A. Curtin, J. Song, Acta Mater. 116, 364 (2016)

    CAS  Google Scholar 

  16. M. Wen, L. Zhang, B. An, S. Fukuyama, K. Yokogawa, Phys. Rev. B 80, 094113 (2009)

    Google Scholar 

  17. A. Chauniyal, G. Dehm, R. Janisch, J. Mech. Phys. Solids 154, 104511 (2021)

    CAS  Google Scholar 

  18. X. Liu, F. Yuan, Y. Wei, Appl. Surf. Sci. 279, 159 (2013)

    CAS  Google Scholar 

  19. P.G. Heighway, D. McGonegle, N. Park, A. Higginbotham, J.S. Wark, Phys. Rev. Mater. 3, 083602 (2019)

    CAS  Google Scholar 

  20. P. Tang, J. Feng, Z. Wan, X. Huang, S. Yang, L. Lu, X. Zhong, Ceram. Int. 47, 20298 (2021)

    CAS  Google Scholar 

  21. G.Z. Voyiadjis, M. Yaghoobi, Mater. Sci. Eng. A 634, 20 (2015)

    CAS  Google Scholar 

  22. J. Song, W.A. Curtin, Nat. Mater. 12, 145 (2013)

    CAS  Google Scholar 

  23. P. Hirel, Comput. Phys. 197, 212 (2015)

    CAS  Google Scholar 

  24. A. Stukowski, Model. Simul. Mater. Sc. 18, 015012 (2010)

    Google Scholar 

  25. H. Tsuzuki, P.S. Branicio, J.P. Rino, Comput. Phys. 177, 518 (2007)

    CAS  Google Scholar 

  26. H.J.N. Daniel Faken, Comput. Mater. Sci. 2, 279 (1994)

    Google Scholar 

  27. C.L.K.S.J.P.J.C. Hamilton, Phys. Rev. B 58, 17 (1998)

    Google Scholar 

  28. A. Stukowski, V.V. Bulatov, A. Arsenlis, Model. Simul. Mater. Sc. 20, 085007 (2012)

    Google Scholar 

  29. J.A. Hofer, C.J. Ruestes, E.M. Bringa, H.M. Urbassek, Model. Simul. Mater. Sc. 28, 025010 (2020)

    CAS  Google Scholar 

  30. M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, M. Asta, Philos. Mag. 83, 3977 (2003)

    CAS  Google Scholar 

  31. A. Ramasubramaniam, M. Itakura, E.A. Carter, Phys. Rev. B 79, 174101 (2009)

    Google Scholar 

  32. A.J. Bushby, N.M. Jennett, Mat. Res. Soc. Symp. 649, Q7 (2001)

    CAS  Google Scholar 

  33. C. Begau, A. Hartmaier, E.P. George, G.M. Pharr, Acta Mater. 59, 934 (2011)

    CAS  Google Scholar 

  34. R.L. Jackson, H. Ghaednia, H. Lee, A. Rostami, X. Wang, in Tribology for Scientists and Engineers (Springer, New York, 2013), pp.93–140

    Google Scholar 

  35. Y.X. Du, L.J. Zhou, J.G. Guo, Mater. Chem. Phys. 288, 126412 (2022)

    CAS  Google Scholar 

  36. R. Smith, D. Christopher, S.D. Kenny, A. Richter, B. Wolf, Phys. Rev. B 67, 245405 (2003)

    Google Scholar 

  37. G. Voyiadjis, M. Yaghoobi, Crystals 7, 321 (2017)

    Google Scholar 

  38. I.J. Spary, A.J. Bushby, N.M. Jennett, Philos. Mag. 86, 5581 (2006)

    CAS  Google Scholar 

  39. T.L. Li, Y.F. Gao, H. Bei, E.P. George, J. Mech. Phys. Solids 59, 1147 (2011)

    CAS  Google Scholar 

  40. J. Pfetzing, M.F.X. Wagner, R. Zarnetta, K.G. Tak, G. Eggeler, Prakt. Metallogr. 46, 2 (2009)

    Google Scholar 

  41. A. Barnoush, H. Vehoff, Acta Mater. 58, 5274 (2010)

    CAS  Google Scholar 

  42. D. Catoor, Y.F. Gao, J. Geng, M.J.N.V. Prasad, E.G. Herbert, K.S. Kumar, G.M. Pharr, E.P. George, Acta Mater. 61, 2953 (2013)

    CAS  Google Scholar 

  43. S. Wang, N. Hashimoto, S. Ohnuki, Sci. Rep. 3, 2760 (2013)

    Google Scholar 

  44. M. Itakura, H. Kaburaki, M. Yamaguchi, T. Okita, Acta Mater. 61, 6857 (2013)

    CAS  Google Scholar 

  45. I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren, Metall. Mater. Trans. A 46, 2323 (2015)

    CAS  Google Scholar 

  46. M. Nagumo, K. Takai, Acta Mater. 165, 722 (2019)

    CAS  Google Scholar 

  47. A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, R.O. Ritchie, J. Mech. Phys. Solids 112, 403 (2018)

    CAS  Google Scholar 

  48. M. Connolly, M. Martin, P. Bradley, D. Lauria, A. Slifka, R. Amaro, C. Looney, J.S. Park, Acta Mater. 180, 272 (2019)

    CAS  Google Scholar 

  49. M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, P. Sofronis, Acta Mater. 165, 734 (2019)

    CAS  Google Scholar 

  50. L. Wan, W.T. Geng, A. Ishii, J.P. Du, Q. Mei, N. Ishikawa, H. Kimizuka, S. Ogata, Int. J. Plast. 112, 206 (2019)

    CAS  Google Scholar 

  51. F. Cao, Z. Shi, G.L. Song, M. Liu, M.S. Dargusch, A. Atrens, Corros. Sci. 96, 121 (2015)

    CAS  Google Scholar 

  52. Q. Sun, J. He, A. Nagao, Y. Ni, S. Wang, Acta Mater. 246, 118660 (2023)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 52071238, &U20A20279), the National Key Research and Development Program of China (No. 2022YFB3706701), and the 111 Project (No. D18018). In this work, numerical calculation is supported by High-Performance Computing Center of Wuhan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Cheng or Chengyang Hu.

Ethics declarations

Conflict of Interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, W., Cheng, L., Wang, R. et al. Atomistic Investigation of the Influence of Hydrogen on Mechanical Response during Nanoindentation in Pure Iron. Acta Metall. Sin. (Engl. Lett.) 36, 1179–1192 (2023). https://doi.org/10.1007/s40195-023-01555-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-023-01555-2

Keywords

Navigation