Skip to main content
Log in

Synthesis of SiO2@MOF-199 as a Fiber Coating for Headspace Solid-Phase Microextraction of Phthalates in Plastic Bottled Milk

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this paper, SiO2@MOF-199 composite with core–shell structure was prepared by in-situ growth of MOF-199 on the surface of SiO2 microspheres, and SiO2@MOF-199 coated fiber was prepared for headspace solid phase microextraction (HS-SPME) of phthalate esters (PAEs) in plastic bottled milk. The prepared SiO2@MOF-199 has both mesoporous structure of SiO2 and microporous structure of MOF-199. The hierarchical porous structure not only gives the analyte higher adsorption performance, but also improves the diffusion rate of the analyte in SiO2@MOF-199. The coated fibers have good thermal stability and are relatively uniform in size and structure. The extraction conditions of the prepared fibers for PAEs were optimized by single factor optimization and response surface Box-Behnken design. Under optimized conditions, the fiber displays wide linear ranges of PAEs (dimethyl phthalate, diethyl phthalate and diallyl phthalate are 5–800 ng L−1, di-n-butyl phthalate, butyl benzyl phthalate and di-n-octyl phthalate are 50–1000 ng L−1), low limits of detection (0.3–19.8 ng L−1), and high enrichment factors (325–2089). The intra-day and inter-day relative standard deviations (RSD) for PAEs extractions using a single fiber were (4.7–8.5%) and (5.7–9.1%), respectively. The fiber-to-fiber reproducibility for three fibers prepared in parallel was 7.2–11.3% (RSD). The method was successfully applied to the extraction of PAEs from plastic bottled milk and to the quantitation by a gas chromatograph with a flame ionization detector. The average recoveries were 84.0% to 105%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li JQ, Wang Z, Wang QQ, Guo LY, Wang C, Wang Z, Zhang SH, Wu QH (2021) Construction of Hypercrosslinked Polymers for High-Performance Solid Phase Microextraction of Phthalate Esters From Water Samples. J Chromatogr A 1641:461972. https://doi.org/10.1016/j.chroma.2021.461972

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Chen GC, Christie P, Zhang MY, Luo YM, Teng Y (2015) Occurrence and Risk Assessment of Phthalate Esters (PAEs) in Vegetables And Soils of Suburban Plastic Film Greenhouses. Sci Total Environ 523:129–137. https://doi.org/10.1016/j.scitotenv.2015.02.101

    Article  CAS  PubMed  Google Scholar 

  3. Dobaradaran S, Akhbarizadeh R, Mohammadi MJ, Izadi A, Keshtkar M, Tangestani M, Moazzen M, Shariatifar N, Mahmoodi M (2020) Determination of Phthalates in Bottled Milk by a Modified Nano Adsorbent: Presence, Effects of Fat and STorage Time, and Implications for Human Health. Microchem J 159:105516. https://doi.org/10.1016/j.microc.2020.105516

    Article  CAS  Google Scholar 

  4. Adenuga AA, Ayinuola O, Adejuyigbe EA, Ogunfowokan AO (2020) Biomonitoring of Phthalate Esters in Breast-Milk and Urine Samples as Biomarkers for Neonates’ Exposure, Using Modified Quechers Method with Agricultural Biochar as Dispersive Solid-Phase Extraction Absorbent. Microchem J 152:104277. https://doi.org/10.1016/j.microc.2019.104277

    Article  CAS  Google Scholar 

  5. Mehrani Z, Ebrahimzadeh H, Moradi E (2019) Poly m-Aminophenol/Nylon6/Graphene Oxide Electrospun Nanofiber as an Efficient Sorbent for Thin Film Microextraction of Phthalate Esters in Water and Milk Solutions Preserved in Baby Bottle. J Chromatogr A 1600:87–94. https://doi.org/10.1016/j.chroma.2019.04.057

    Article  CAS  PubMed  Google Scholar 

  6. Wu QH, Song YH, Wang QQ, Liu WH, Hao L, Wang Z, Wang C (2021) Combination of Magnetic Solid-Phase Extraction and HPLC-UV for Simultaneous Determination of Four Phthalate Esters in Plastic Bottled Juice. Food Chem 339:127855. https://doi.org/10.1016/j.foodchem.2020.127855

    Article  CAS  PubMed  Google Scholar 

  7. Delinska K, Rakowska PW, Kloskowski A (2021) Porous Material-Based Sorbent Coatings in Solid-Phase Microextraction Technique: Recent Trends and Future Perspectives. Trends Anal Chem 143:116386. https://doi.org/10.1016/j.trac.2021.116386

    Article  CAS  Google Scholar 

  8. Hashemi-Moghaddam H, Ahmadifard M (2016) Novel Molecularly-Imprinted Solid-Phase Microextraction Fiber Coupled with Gas Chromatography for Analysis of Furan. Talanta 150:148–154. https://doi.org/10.1016/j.talanta.2015.08.044

    Article  CAS  PubMed  Google Scholar 

  9. Yu H, Ho TD, Anderson JL (2013) Ionic liquid and Polymeric Ionic Liquid Coatings in Solid-Phase Microextraction. TrAC Trends Anal Chem 45:219–232. https://doi.org/10.1016/j.trac.2012.10.016

    Article  CAS  Google Scholar 

  10. Bagheri H, Ayazi Z, Sistani H (2011) Chemically Bonded Carbon Nanotubes on Modified Gold Substrate as Novel Unbreakable Solid Phase Microextraction Fiber. Microchim Acta 174(3):295–301. https://doi.org/10.1007/s00604-011-0621-4

    Article  CAS  Google Scholar 

  11. Mullett WM, Pawliszyn J (2003) The Development of Selective and Biocompatible Coatings for Solid Phase Microextraction. J Sep Sci 26(3–4):251–260. https://doi.org/10.1002/jssc.200390031

    Article  CAS  Google Scholar 

  12. Amanzadeh H, Yamini Y, Moradi M (2015) Zinc Oxide/Polypyrrole Nanocomposite as a Novel Solid Phase Microextraction Coating for Extraction of Aliphatic Hydrocarbons from Water and Soil Samples. Anal Chim Acta 884:52–60. https://doi.org/10.1016/j.aca.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  13. Yu LQ, Wang LY, Su FH, Hao PY, Wang H, Lv YK (2018) A Gate-Opening Controlled Metal-Organic Framework for Selective Solid-Phase Microextraction Of Aldehydes from Exhaled Breath of Lung Cancer Patients. Microchim Acta 185(6):307. https://doi.org/10.1007/s00604-018-2843-1

    Article  CAS  Google Scholar 

  14. Yu LQ, Su FH, Ma MY, Lv YK (2019) Metal-Organic Frameworks for the Sorption of Acetone and Isopropanol in Exhaled Breath of Diabetics Prior to Quantitation by Gas Chromatography. Microchim Acta 186(8):588. https://doi.org/10.1007/s00604-019-3713-1

    Article  CAS  Google Scholar 

  15. Ma MY, Yu LQ, Wang SW, Meng Y, Lv YK (2021) Hybrid ZIF-8-90 for Selective Solid-Phase Microextraction of Exhaled Breath from Gastric Cancer Patients. ACS Appl Bio Mater 4(4):3608–3613. https://doi.org/10.1021/acsabm.1c00107

    Article  CAS  PubMed  Google Scholar 

  16. Sohrabi H, Javanbakht S, Oroojalian F, Rouhani F, Shaabani A, Majidi MR, Hashemzaei M, Hanifehpour Y, Mokhtarzadeh A, Morsali A (2021) Nanoscale Metal-Organic Frameworks: Recent Developments In Synthesis, Modifications and Bioimaging Applications. Chemosphere 281:130717. https://doi.org/10.1016/j.chemosphere.2021.130717

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Wang J, Dong XX, Lv YK (2020) Recent Advances in Photocatalytic Degradation of Organic Pollutants in Environment by Metal-Organic Frameworks. Chemosphere 242:125144. https://doi.org/10.1016/j.chemosphere.2019.125144

    Article  CAS  PubMed  Google Scholar 

  18. Liu C, Yu LQ, Zhao YT, Lv YK (2018) Recent Advances in Metal-Organic Frameworks for Adsorption of Common Aromatic Pollutants. Microchim Acta 185(7):342. https://doi.org/10.1007/s00604-018-2879-2

    Article  CAS  Google Scholar 

  19. Zhang Q, Wang CF, Lv YK (2018) Luminescent Switch Sensors for the Detection of Biomolecules Based on Metal-Organic Frameworks. Analyst 143:4221–4229. https://doi.org/10.1039/C8AN00816G

    Article  CAS  PubMed  Google Scholar 

  20. Ma YJ, Jiang XX, Lv YK (2019) Research Progress in the Preparation and Application of Magnetic Metal-Organic Framework Composites. Chem-Asian J 14:3515–3530. https://doi.org/10.1002/asia.201901139

    Article  CAS  PubMed  Google Scholar 

  21. Gutierrez-Serpa A, Pacheco-Fernandez I, Pasan J, Pino V (2019) Metal-Organic Frameworks as Key Materials for Solid-Phase Microextraction Devices-a Review. Separations 6(4):47. https://doi.org/10.3390/separations6040047

    Article  CAS  Google Scholar 

  22. Hajializadeh A, Ansari M, Foroughi MM, Kazemipour M (2020) Ultrasonic Assisted Synthesis of a Novel Ternary Nanocomposite Based on Carbon Nanotubes/Zeolitic Imidazolate Framework-67/Polyaniline for Solid-Phase Microextraction of Organic Pollutants. Microchem J 57:105008. https://doi.org/10.1016/j.microc.2020.105008

    Article  CAS  Google Scholar 

  23. Zhang SH, Yang Q, Li Z, Wang WJ, Zang XH, Wang C, Wang Z (2018) Solid Phase Microextraction of Phthalic Acid Esters from Vegetable Oils Using Iron (III)-Based Metal-Organic Framework/Graphene Oxide Coating. Food Chem 263:258–264. https://doi.org/10.1016/j.foodchem.2018.04.132

    Article  CAS  PubMed  Google Scholar 

  24. Mirzajani R, Kardani F, Ramezani Z (2020) Fabrication of UMCM-1 Based Monolithic and Hollow Fiber-Metal-Organic Framework Deep Eutectic Solvents/Molecularly Imprinted Polymers and Their Use in Solid Phase Microextraction of Phthalate Esters in Yogurt, Water and Edible Oil by GC-FID. Food Chem 314:126179. https://doi.org/10.1016/j.foodchem.2020.126179

    Article  CAS  PubMed  Google Scholar 

  25. Ma MY, Lu LY, Li HW, Xiong YZ, Dong FP (2019) Functional Metal Organic Framework/SiO2 Nanocomposites: from Versatile Synthesis to Advanced Applications. Polymers 11(11):1823. https://doi.org/10.3390/polym11111823

    Article  CAS  PubMed Central  Google Scholar 

  26. Zeng F, Pan YC, Luan XW, Gao YF, Yang JJ, Wang YZ, Song YJ (2021) Copper Metal-Organic Framework Incorporated Mesoporous Silica as a Bioorthogonal Biosensor for Detection of Glutathione. Sensor Actuat B-Chem 345:130382. https://doi.org/10.1016/j.snb.2021.130382

    Article  CAS  Google Scholar 

  27. Hu M, Ju Y, Liang K, Suma T, Cui J, Caruso F (2016) Void Engineering in Metal-Organic Frameworks via Synergistic Etching and Surface Functionalization. Adv Funct Mater 26(32):5827–5834. https://doi.org/10.1002/adfm.201601193

    Article  CAS  Google Scholar 

  28. Britt D, Tranchemontagne D, Yaghi OM (2008) Metal-Organic Frameworks with High Capacity and Selectivity for Harmful Gases. P Natl Acad Sci USA 105(33):11623–11627. https://doi.org/10.1073/pnas.0804900105

    Article  Google Scholar 

  29. Cui XY, Gu ZY, Jiang DQ, Li Y, Wang HF, Yan XP (2009) In Situ Hydrothermal Growth of Metal-Organic Framework 199 Films on Stainless Steel Fibers for Solid-Phase Microextraction of Gaseous Benzene Homologues. Anal Chem 81:9771–9777. https://doi.org/10.1021/ac901663x

    Article  CAS  PubMed  Google Scholar 

  30. An Y, Chen M, Xue Q, Liu W (2007) Preparation and Self-Assembly of Carboxylic Acid-Functionalized Silica. J Colloid Interf Sci 311:507–513. https://doi.org/10.1016/j.jcis.2007.02.084

    Article  CAS  Google Scholar 

  31. Chen C, Feng NJ, Guo QR, Li Z, Li X, Ding J, Wang L, Wan H, Guan GF (2018) Template-Directed Fabrication of MIL-101(Cr)/Mesoporous Silica Composite: Layer-Packed Structure and Enhanced Performance for CO2 Capture. J Colloid Interf Sci 513:891–902. https://doi.org/10.1016/j.jcis.2017.12.014

    Article  CAS  Google Scholar 

  32. Arrua RD, Peristyy A, Nesterenko PN, Das A, D’Alessandro DM, Hilder EF (2017) UiO-66@SiO2 Core-Shell Microparticles As Stationary Phases for the Separation of Small Organic Molecules. Analyst 142:517–524. https://doi.org/10.1039/c6an02344d

    Article  CAS  PubMed  Google Scholar 

  33. Peng Y, Sun Y, Sun R, Zhou Y, Tsang DCW, Chen Q (2019) Optimizing the Synthesis of Fe/Al (Hydr) Oxides-Biochars to Maximize Phosphate Removal Via Response Surface Model. J Clean Prod 237:117770. https://doi.org/10.1016/j.jclepro.2019.117770

    Article  CAS  Google Scholar 

  34. Chen J, Quan X, Zhao Y, Yan Y, Yang F (2001) Quantitative structure-Property Relationship Studies on n-octanol/Water Partitioning Coefficients of PCDD/Fs. Chemosphere 44:1369–1374. https://doi.org/10.1016/S0045-6535(00)00347-7

    Article  CAS  PubMed  Google Scholar 

  35. Yang F, Wang M, Wang Z (2013) Sorption Behavior of 17 Phthalic Acid Esters on Three Soils: Effects of pH and Dissolved Organic Matter, Sorption Coefficient Measurement and QSPR Study. Chemosphere 93:82–89. https://doi.org/10.1016/j.chemosphere.2013.04.081

    Article  CAS  PubMed  Google Scholar 

  36. Yan HY, Cheng XL, Liu BM (2011) Simultaneous Determination of Six Phthalate Esters in Bottled Milks Using Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Coupled with Gas Chromatography. J Chromatogr B 879:2507–2512. https://doi.org/10.1016/j.jchromb.2011.07.001

    Article  CAS  Google Scholar 

  37. Sajid M, Basheer C, Alsharaa A, Narasimhan K, Buhmeida A, Qahtani MA, Al-Ahwal MS (2016) Development of Natural Sorbent Based Micro-Solid-Phase Extraction for Determination of Phthalate Esters in Milk Samples. Anal Chim Acta 924:35–44. https://doi.org/10.1016/j.aca.2016.04.016

    Article  CAS  PubMed  Google Scholar 

  38. Tang ZG, Han Q, Xie L, Chu LL, Wang Y, Sun Y, Kang XJ (2019) Simultaneous Determination of Five Phthalate Esters and Bisphenol A in Milk by Packed-Nanofiber Solid-Phase Extraction Coupled with Gas Chromatography and Mass Spectrometry. J Sep Sci 42:851–861. https://doi.org/10.1002/jssc.201800811

    Article  CAS  PubMed  Google Scholar 

  39. Moahammadi AA, Davarani SSH, Jafari M, Mehdinia A (2021) Preparation and Evaluation of a New Solid-Phase Microextraction Fiber Based on Polythionine for Analysis of Phthalate Esters in aqueous Samples. J Iran Chem Soc 18(2):385–391. https://doi.org/10.1007/s13738-020-02034-6

    Article  CAS  Google Scholar 

  40. Wang YC, Wang JL, Shu YY (2020) Purge-Assisted And Temperature-Controlled Headspace Solid-Phase Microextraction Combined with Gas Chromatography-Mass Spectrometry for Determination of Six Common Phthalate Esters in Aqueous Samples. J Food Meas Charact 14(4):1833–1841. https://doi.org/10.1007/s11694-020-00430-3

    Article  Google Scholar 

  41. Zanganeh F, Yamini Y, Khataei MM, Badiei A (2022) Ethane-Bridge Periodic Mesoporous Organosilica Materials as a Novel Fiber Coating in Headspace Solid-Phase Microextraction of Phthalate Esters From Saliva and PET Container Samples. Anal Bioanal Chem Re 414:2285–2296. https://doi.org/10.1007/s00216-021-03868-6

    Article  CAS  Google Scholar 

  42. Zakerian R, Bahar S (2017) Electrochemical Preparation of Zinc Oxide/Polypyrrole Nanocomposite Coating for the Highly Effective Solid-Phase Microextraction of Phthalate Esters. J Sep Sci. https://doi.org/10.1002/jssc.201700799

    Article  PubMed  Google Scholar 

  43. Kazemi M, Niazi A, Yazdanipour A (2021) Solid-Phase Microextraction of Phthalate Esters from Aqueous Media by Functionalized Carbon Nanotubes (Graphene Oxide Nanoribbons) and Determination by GC-FID. Chromatographia 84(6):559–569. https://doi.org/10.1007/s10337-021-04032-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei Province (B2016201213, B2016201210), Research Innovation Team of College of Chemistry and Environmental Science of Hebei University (hxkytd-py2101) and Hebei University Student' Innovation and Entrepreneurship Training Program of China (2021187).

Funding

Natural Science Foundation of Hebei Province,B2016201213,Yun-Kai Lv,B2016201210,Li-Qing Yu,Research Innovation Team of College of Chemistry and Environmental Science of Hebei University,hxkytd-py2101,Yun-Kai Lv,Hebei University Student' Innovation and Entrepreneurship Training Program of China,2021187,Zhao Yang

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue-Na Sun or Yun-Kai Lv.

Ethics declarations

Conflict of Interest

The author(s) declare that they have no competing interests.

Ethical approval

All experimental procedures are informed consent of diabetics and healthy volunteers and approved by the ethics committee in Hebei University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3965 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, XX., Sun, YN., Zhang, C. et al. Synthesis of SiO2@MOF-199 as a Fiber Coating for Headspace Solid-Phase Microextraction of Phthalates in Plastic Bottled Milk. Chromatographia 85, 851–863 (2022). https://doi.org/10.1007/s10337-022-04184-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04184-6

Keywords

Navigation