Skip to main content
Log in

Development of an Efficient Solid-Phase Microextraction Monolithic Column for the Analysis of Estrogens in Human Urine and Serum Samples

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Estrogen plays a crucial role in various stages of human development and is present in the human body at trace level; therefore, an efficient strategy for the quantitative analysis of trace estrogens is required. However, this analysis is complicated by the presence of extremely complex biological matrices. To address this challenge, a novel method based on monolithic column solid-phase microextraction and ultra-high-performance liquid chromatography-tandem mass spectrometry was developed for the sensitivity analysis of six estrogens: β-estradiol, α-estradiol, 17α-ethynylestradiol, estrone, diethylstilbestrol, and hexestrol, in human urine and serum samples. The method exhibits a low limit of detection (8.6–37 ng L−1), with wide linear ranges (0.10–25 μg L−1) for each analyte and remarkable correlation coefficients (R2 = 0.9953–0.9995). The developed method was successfully used to detect estrogens in urine and serum samples. The six analytes were satisfactorily recovered between 76.2 and 107% with relative standard deviations ranging from 2.5 to 8.3% (n = 3). The results demonstrated that the developed method, based on a poly(methacrylic acid/3-acrylamidophenylboronic acid-co-ethylene glycol dimethacrylate) monolithic column, is an effective enrichment approach toward the analysis of trace estrogens in human urine and serum samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Atashgaran V, Wrin J, Barry SC, Dasari P, Ingman WV (2016) Dissecting the biology of menstrual cycle-associated breast cancer risk. Front Oncol 6:267–276

    Article  PubMed  PubMed Central  Google Scholar 

  2. Berkane N, Liere P, Oudinet JP, Hertig A, Lefèvre G, Pluchino N, Schumacher M, Chabbert-Buffet N (2017) From pregnancy to preeclampsia: a key role for estrogens. Endocr Rev 38:123–144

    Article  PubMed  Google Scholar 

  3. Cussenot O, Azzouzi AR, Nicolaiew N, Fromont G, Mangin P, Cormier L, Fournier G, Valeri A, Larre S, Thibault F, Giordanella JP, Pouchard M, Zheng Y, Hamdy FC, Cox A, Cancel-Tassin G (2007) Combination of polymorphisms from genes related to estrogen metabolism and risk of prostate cancers: the hidden face of estrogens. J Clin Oncol 25:3596–3602

    Article  CAS  PubMed  Google Scholar 

  4. Senekjian EK, Press MF, Blough RR, Herbst AL, DeSombre ER (1989) Comparison of the quantity of estrogen receptors in human endometrium and myometrium by steroid-binding assay and enzyme immunoassay based on monoclonal antibodies to human estrophilin. Am J Obstet Gynecol 160:592–597

    Article  CAS  PubMed  Google Scholar 

  5. Rinaldi S, Moret CN, Kaaks R, Biessy C, Kurzer MS, Déchaud H, Peeters PHM, Noord PAHV (2003) Reproducibility over time of measurements of androgens, estrogens and hydroxy estrogens in urine samples from post-menopausal women. Eur J Epidemiol 18:417–424

    Article  CAS  PubMed  Google Scholar 

  6. González A, Clavijo S, Cerdà V (2019) Estrogens determination exploiting a SIA-LOV system prior in-port derivatization-large volume injection-programmable temperature vaporization-gas chromatography. Talanta 194:852–858

    Article  PubMed  CAS  Google Scholar 

  7. Asadi Atoi P, Talebpour Z, Fotouhi L (2019) Introduction of electropolymerization of pyrrole as a coating method for stir bar sorptive extraction of estradiol followed by gas chromatography. J Chromatogr A 1604:460478–460488

    Article  CAS  PubMed  Google Scholar 

  8. You J, Shi Y, Li J, Yang X, Liu Z, Zhu W, Wu Z, Xiong J (2019) Rapid quantification of human urinary estrogens and estrogen metabolites by HPLC mass spectrometry. Microchem J 147:157–162

    Article  CAS  Google Scholar 

  9. Laforest S, Pelletier M, Denver N, Poirier B, Nguyen S, Walker BR, Durocher F, Homer NZM, Diorio C, Tchernof A, Andrew R (2019) Simultaneous quantification of estrogens and glucocorticoids in human adipose tissue by liquid-chromatography-tandem mass spectrometry. J Steroid Biochem 195:105476–105484

    Article  CAS  Google Scholar 

  10. Wang C, Yang L, Li N, Zhang X, Guo Y, Li C (2017) Development of immunoaffinity solid phase microextraction rods for analysis of three estrogens in environmental water samples. J Chromatogr B 1061–1062:41–48

    Article  CAS  Google Scholar 

  11. Frederiksen H, Johannsen TH, Andersen SE, Albrethsen J, Landersoe SK, Petersen JH, Andersen AN, Vestergaard ET, Schorring ME, Linneberg A, Main KM, Andersson AM, Juul A (2020) Sex-specific estrogen levels and reference intervals from infancy to late adulthood determined by LC-MS/MS. J Clin Endocr Metab 105:754–768

    Article  Google Scholar 

  12. Zhang J, Zang L, Wang T, Wang X, Jia M, Zhang D, Zhang H (2020) A solid-phase extraction method for estrogenic disrupting compounds based on the estrogen response element. Food Chem 333:127529–127535

    Article  CAS  PubMed  Google Scholar 

  13. Jiang Q, Xu P, Sun M (2020) Resorcinol-formaldehyde aerogel coating for in-tube solid-phase microextraction of estrogens. J Sep Sci 43:1323–1330

    Article  CAS  PubMed  Google Scholar 

  14. Ben Fredj S, Nobbs J, Tizaoui C, Monser L (2015) Removal of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) from wastewater by liquid-liquid extraction. Chem Eng J 262:417–426

    Article  CAS  Google Scholar 

  15. Goh SXG, Lee HK (2017) An alternative perspective of hollow fiber-mediated extraction: Bundled hollow fiber array-liquid-phase microextraction with sonication-assisted desorption and liquid chromatography-tandem mass spectrometry for determination of estrogens in aqueous matrices. J Chromatogr A 1488:26–36

    Article  CAS  PubMed  Google Scholar 

  16. Kibambe MG, Momba MNB, Daso AP, Van Zijl MC, Coetzee MAA (2020) Efficiency of selected wastewater treatment processes in removing estrogen compounds and reducing estrogenic activity using the T47D-KBLUC reporter gene assay. J Environ Manage 260:110135–110145

    Article  CAS  PubMed  Google Scholar 

  17. González A, Cerdà V (2020) Development of an automatic sequential injection analysis-lab on valve system exploiting molecularly imprinted polymers coupled with high performance liquid chromatography for the determination of estrogens in wastewater samples. Talanta 209:120564–120569

    Article  PubMed  CAS  Google Scholar 

  18. Wang Y, Jin S, Wang Q, Lu G, Jiang J, Zhu D (2013) Zeolitic imidazolate framework-8 as sorbent of micro-solid-phase extraction to determine estrogens in environmental water samples. J Chromatogr A 1291:27–32

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Cheng C, Yang Y (2015) Determination of estrogens in milk samples by magnetic-solid-phase extraction technique coupled with high-performance liquid chromatography. J Food Sci 80:2655–2661

    Article  CAS  Google Scholar 

  20. Li W, Zhang J, Zhu W, Qin P, Zhou Q, Lu M, Zhang X, Zhao W, Zhang S, Cai Z (2020) Facile preparation of reduced graphene oxide/ZnFe2O4 nanocomposite as magnetic sorbents for enrichment of estrogens. Talanta 208:120440–120447

    Article  CAS  PubMed  Google Scholar 

  21. Huang S, Ye N, Chen G, Ou R, Huang Y, Zhu F, Shen J, Ouyang G (2019) A robust and homogeneous porous poly(3,4-ethylenedioxythiophene)/graphene thin film for high-efficiency laser desorption/ionization analysis of estrogens in biological samples. Talanta 195:290–297

    Article  CAS  PubMed  Google Scholar 

  22. Do Carmo SN, Merib J, Carasek E (2019) Bract as a novel extraction phase in thin-film SPME combined with 96-well plate system for the high-throughput determination of estrogens in human urine by liquid chromatography coupled to fluorescence detection. J Chromatogr B 1118–1119:17–24

    Article  CAS  Google Scholar 

  23. Feng J, Sun M, Bu Y, Luo C (2016) Hollow fiber membrane-coated functionalized polymeric ionic liquid capsules for direct analysis of estrogens in milk samples. Anal Bioanal Chem 408:1679–1685

    Article  CAS  PubMed  Google Scholar 

  24. Feng J, Sun M, Bu Y, Luo C (2016) Development of a cheap and accessible carbon fibers-in-poly(ether ether ketone) tube with high stability for online in-tube solid-phase microextraction. Talanta 148:313–320

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Feng J, Tian Y, Li C, Ji X, Luo C, Sun M (2019) Melamine-formaldehyde aerogel functionalized with polydopamine as in tube solid-phase microextraction coating for the determination of phthalate esters. Talanta 199:317–323

    Article  CAS  PubMed  Google Scholar 

  26. Feng J, Wang X, Han S, Ji X, Li C, Luo C, Sun M (2019) An ionic-liquid-modified melamine-formaldehyde aerogel for in-tube solid-phase microextraction of estrogens followed by high performance liquid chromatography with diode array detection. Microchim Acta 186:769–776

    Article  CAS  Google Scholar 

  27. Feng J, Loussala HM, Han S, Ji X, Li C, Sun M (2020) Recent advances of ionic liquids in sample preparation. TrAC Trends Anal Chem 125:115833–115853

    Article  CAS  Google Scholar 

  28. Feng J, Feng J, Ji X, Li C, Han S, Sun H, Su M (2021) Recent advances of covalent organic frameworks for solid-phase microextraction. TrAC Trends Anal Chem 137:116208–116223

    Article  CAS  Google Scholar 

  29. Sun M, Li C, Feng J, Sun H, Sun M, Feng Y, Ji X, Han S, Feng J (2022) Development of aerogels in solid-phase extraction and microextraction. TrAC Trends Anal Chem 146:116497–116513

    Article  CAS  Google Scholar 

  30. Wang S, Geng Y, Sun X, Wang R, Zheng Z, Hou S, Wang X, Ji W (2020) Molecularly imprinted polymers prepared from a single cross-linking functional monomer for solid-phase microextraction of estrogens from milk. J Chromatogr A 1627:461400–461408

    Article  CAS  PubMed  Google Scholar 

  31. Sun M, Feng J, Bu Y, Luo C (2016) Ionic liquid coated copper wires and tubes for fiber-in-tube solid-phase microextraction. J Chromatogr A 1458:1–8

    Article  CAS  PubMed  Google Scholar 

  32. Bagheri H, Piri-Moghadam H, Ahdi T (2012) Role of precursors and coating polymers in sol-gel chemistry toward enhanced selectivity and efficiency in solid phase microextraction. Anal Chim Acta 742:45–53

    Article  CAS  PubMed  Google Scholar 

  33. Lan H, Pan D, Sun Y, Guo Y, Wu Z (2016) Thin metal organic frameworks coatings by cathodic electrodeposition for solid-phase microextraction and analysis of trace exogenous estrogens in milk. Anal Chim Acta 937:53–60

    Article  CAS  PubMed  Google Scholar 

  34. Fan Y, Feng Y, Da S, Shi Z (2004) Poly (methacrylic acid–ethylene glycol dimethacrylate) monolithic capillary for in-tube solid phase microextraction coupled to high performance liquid chromatography and its application to determination of basic drugs in human serum. Anal Chim Acta 523:251–258

    Article  CAS  Google Scholar 

  35. Wei F, Zhang M, Feng Y (2006) Application of poly(methacrylic acid-ethylene glycol dimethacrylate) monolith microextraction coupled with capillary zone electrophoresis to the determination of opiates in human urine. Electrophoresis 27:1939–1948

    Article  CAS  PubMed  Google Scholar 

  36. Wei F, Fan Y, Zhang M, Feng Y (2005) Poly(methacrylic acid-ethylene glycol dimethacrylate) monolith in-tube solid-phase microextraction applied to simultaneous analysis of some amphetamine derivatives in urine by capillary zone electrophoresis. Electrophoresis 26:3141–3150

    Article  CAS  PubMed  Google Scholar 

  37. Hu Y, Fan Y, Li G (2012) Preparation and evaluation of a porous monolithic capillary column for microextraction of estrogens from urine and milk samples online coupled to high-performance liquid chromatography. J Chromatogr A 1228:205–212

    Article  CAS  PubMed  Google Scholar 

  38. Ren L, Liu Z, Dong M, Ye M, Zou H (2009) Synthesis and characterization of a new boronate affinity monolithic capillary for specific capture of cis-diol-containing compounds. J Chromatogr A 1216:4768–4774

    Article  CAS  PubMed  Google Scholar 

  39. Yang X, Hu Y, Li G (2014) Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine. J Chromatogr A 1342:37–43

    Article  CAS  PubMed  Google Scholar 

  40. Li D, Chen Y, Liu Z (2015) Boronate affinity materials for separation and molecular recognition: Structure, properties and applications. Chem Soc Rev 44:8097–8123

    Article  CAS  PubMed  Google Scholar 

  41. Chen J, Li X, Feng M, Luo K, Yang J, Bo Z (2017) Novel boronate material affords efficient enrichment of glycopeptides by synergized hydrophilic and affinity interactions. Anal Bioanal Chem 409:519–528

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Q, Xia G, Liang J, Zhang X, Jiang L, Zheng Y, Wang X (2020) NH2-MIL-53(Al) Polymer monolithic column for in-tube solid-phase microextraction combined with UHPLC-MS/MS for detection of trace sulfonamides in food samples. Molecules 25:897–912

    Article  CAS  PubMed Central  Google Scholar 

  43. Kahraman G, Beşkardeş O, Rzaev ZMO, Pişki E (2004) Bioengineering polyfunctional copolymers. VII. Synthesis and characterization of copolymers of p-vinylphenyl boronic acid with maleic and citraconic anhydrides and their self-assembled macrobranched supramolecular architectures. Polymer 45:5813–5828

    Article  CAS  Google Scholar 

  44. De Araújo Elpídio CM, De Araújo Padilha CE, De Sousa Júnior FC, Do Nascimento RJA, De Araújo Elpídio CM, De Oliveira Júnior SD, De Macedo GR, Dos Santos ES (2018) Fabrication and characterization of a dye-immobilized yttria-stabilized zirconia pellicular adsorbent for expanded bed adsorption chromatography. Chromatographia 81:1355–1364

    Article  CAS  Google Scholar 

  45. Moniri E, Panahi HA, Alimadadi A (2015) Polymer-grafted nanographite support obtained using iminodiacetic acid/allyl glycidyl ether: characterization and application in the extraction and determination of enrofloxacin in biological and pharmaceutical samples. Chromatographia 79:293–301

    Article  CAS  Google Scholar 

  46. Liu Y, Ren L, Liu Z (2011) A unique boronic acid functionalized monolithic capillary for specific capture, separation and immobilization of cis-diol biomolecules. Chem Commun 47:5067–5069

    Article  CAS  Google Scholar 

  47. Luo X, Li G, Hu Y (2017) In-tube solid-phase microextraction based on NH2-MIL-53(Al)-polymer monolithic column for online coupling with high-performance liquid chromatography for directly sensitive analysis of estrogens in human urine. Talanta 165:377–383

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21505115), the Top Scientific and Technological Talents in Universities of Guizhou Province (KY2018078), the Science and Technology for Youth Talent Growth Project of the Guizhou Provincial Education Department (KY2020216), the Key Laboratory for Analytical Science of Food and Environment Pollution of Qianxinan (2021-2-31), and the Projects of Xingyi Normal University for Nationalities (21XYYB10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianchun Zhang or Xingyi Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

The experiments were improved by the ethics committee of Qian Xi Nan People's Hospital. All volunteers were informed of and agreed with the objectives of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, Y., Yang, B. et al. Development of an Efficient Solid-Phase Microextraction Monolithic Column for the Analysis of Estrogens in Human Urine and Serum Samples. Chromatographia 85, 733–741 (2022). https://doi.org/10.1007/s10337-022-04178-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04178-4

Keywords

Navigation