Skip to main content
Log in

A New Composite of O-aminobenzene Sulfonic Acid Self-Doped Polyaniline and Multi-Walled Carbon Nanotubes as a Fiber Coating for Solid-Phase Microextraction Gas Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A new composite of o-aminobenzene sulfonic acid self-doped polyaniline (SPAN) and multi-walled carbon nanotubes was prepared on a stainless steel wire by electrochemical method as a headspace solid-phase microextraction fiber for gas chromatography. Preparation conditions were investigated, and the resulting composite coating was characterized via scanning electron microscopy, Brunauer–Emmett–Teller (BET) analysis and thermogravimetric analysis. Introduction of MWCNTs and o-aminobenzene sulfonic acid into the composite leads to formation of plenty of microglobules and mesopores and makes BET surface area and thermal decomposition temperature of the composite increase by ~ 340% and ~ 130 ℃, respectively, compared to common polyaniline coating. Extraction conditions were optimized, and chromatographic analysis of 2,4-dichlorophenol was conducted. Extraction efficiency of the new composite coated fiber increases by 320% compared to polyaniline-coated fiber. Relative standard deviations of peak areas are 4.3%, 6.3%, 7.1% (n = 5) for identical fiber, fibers prepared in identical batch and different batches, respectively, exhibiting good repeatability and reproducibility. Detection limit is 1.30 ng L−1 (S/N = 3), and recoveries are in the ranges from 82.3 to 110.2%, from 91.5 to 109.4% and from 94.2 to 113.0% for three different water samples spiked at three levels of 500, 100 and 10 ng mL−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Muscalu AM, Górecki T (2018) Comprehensive two-dimensional gas chromatography in environmental analysis. Trends Anal Chem 106:225–245. https://doi.org/10.1016/j.trac.2018.07.001

    Article  CAS  Google Scholar 

  2. Wasylka JP, Szczepańska N, Guardia M, Namieśnik J (2015) Miniaturized solid-phase extraction techniques. Trends Anal Chem 73:19–38. https://doi.org/10.1016/j.trac.2015.04.026

    Article  CAS  Google Scholar 

  3. Garces NR, Gionfriddo E, Ríos GAG, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J (2018) Advances in solid phase microextraction and perspective on future directions. Anal Chem 90:302–360. https://doi.org/10.1021/acs.analchem.7b04502

    Article  CAS  Google Scholar 

  4. Sajid M, Nazal MK, Rutkowska M, Szczepanska N, Namiesnik J, Wasylkab JP (2019) Solid phase microextraction: apparatus, sorbent materials, and application. Crit Rev Anal Chem 49:1–18. https://doi.org/10.1080/10408347.2018.1517035

    Article  CAS  Google Scholar 

  5. Li J, Xiao Z, Wang W, Zhang S, Wu Q, Wang C, Wang Z (2020) Rational integration of porous organic polymer and multiwall carbon nanotube for the microextraction of polycyclic aromatic hydrocarbons. Microchim Acta 187:2–8. https://doi.org/10.1007/s00604-020-04261-3

    Article  CAS  Google Scholar 

  6. Heydari M, Saraji M, Jafari MT (2019) Electrochemically prepared three-dimensional reduced graphene oxide-polyaniline nanocomposite as a solid-phase microextraction coating for ethion determination. Talanta. https://doi.org/10.1016/j.talanta.2019.120576

    Article  PubMed  Google Scholar 

  7. Pietrzyńska M, Tomczak R, Jezierska K, Voelkel A, Jampílek J (2016) Polymer-ceramic monolithic in-needle extraction (MINE) device: preparation and examination of drug affinity. Mat Sci Eng 68:70–77. https://doi.org/10.1016/j.ejps.2017.05.040

    Article  CAS  Google Scholar 

  8. Xie W, Mullett W, Pawliszyn J (2011) High-throughput polymer monolith in-tip SPME fiber preparation and application in drug analysis. Bioanalysis 3:2613–2625. https://doi.org/10.4155/bio.11.267

    Article  CAS  PubMed  Google Scholar 

  9. Queiroz MEC, Souza ID, Marchioni C (2018) Current advances and applications of in-tube solid-phase microextraction. Trends Anal Chem 111:261–278. https://doi.org/10.1016/j.trac.2018.12.018

    Article  CAS  Google Scholar 

  10. Xu L, Hu Z, Duan R, Wang X, Yang Y, Dong L, Wang X (2021) Advances and applications of in-tube solid-phase microextraction for analysis of proteins. J Chromatogr A 1640:461962–461962. https://doi.org/10.1016/J.CHROMA.2021.461962

    Article  CAS  PubMed  Google Scholar 

  11. Olcer YA, Tascon M, Eroglu AE, Boyaci E (2019) Thin film microextraction: towards faster and more sensitive microextraction. Trends Anal Chem 113:93–101. https://doi.org/10.1016/j.trac.2019.01.022

    Article  CAS  Google Scholar 

  12. Jiang R, Pawliszyn J (2012) Thin-film microextraction offers another geometry for solid-phase microextraction. Trends Anal Chem 39:245–253. https://doi.org/10.1016/j.trac.2012.07.005

    Article  CAS  Google Scholar 

  13. Lashgari M, Yamini Y (2019) An overview of the most common lab-made coating materials in solid phase microextraction. Talanta 191:383–306. https://doi.org/10.1016/j.talanta.2018.08.077

    Article  CAS  Google Scholar 

  14. Godage NH, Gionfriddo E (2019) A critical outlook on recent developments and applications of matrix compatible coatings for solid phase microextraction. Trends Anal Chem 111:220–228. https://doi.org/10.1016/j.trac.2018.12.019

    Article  CAS  Google Scholar 

  15. Tafazoli Z, Azar PA, Tehrani MS, Husain SW (2018) Facile preparation of multifunctional carbon nanotube/magnetite/polyaniline nanocomposite offering a strong option for efficient solid-phase microextraction coupled with GC-MS for the analysis of phenolic compounds. J Sep Sci 41:2736–2742. https://doi.org/10.1002/jssc.201800062

    Article  CAS  PubMed  Google Scholar 

  16. Chunin N, Phooplub K, Kaewpet M, Wattanasin P, Kanatharana P, Thavarungkul P, Buranachai CT (2020) A novel 3D-printed solid phase microextraction device equipped with silver-polyaniline coated pencil lead for the extraction of phthalate esters in cosmeceutical products. Anal Chim Acta 1091:30–39. https://doi.org/10.1016/j.aca.2019.09.036

    Article  CAS  Google Scholar 

  17. Bagheri H, Javanmardi H, Abbasi A, Banihashemi S (2016) A metal organic framework-polyaniline nanocomposite as a fiber coating for solid phase microextraction. J Chromatogr A 1431:27–35. https://doi.org/10.1016/j.chroma.2015.12.077

    Article  CAS  PubMed  Google Scholar 

  18. Bagheri H, Mir A, Babanezhad E (2005) An electropolymerized aniline-based fiber coating for solid phase microextraction of phenols from water. Anal Chim Acta 532:89–95. https://doi.org/10.1016/j.aca.2004.10.040

    Article  CAS  Google Scholar 

  19. Mohammad OAZ, Ali M (2013) Electrochemically prepared solid-phase microextraction coatings—A review. Anal Chim Acta 781:1–13. https://doi.org/10.1016/j.aca.2013.03.012

    Article  CAS  Google Scholar 

  20. Bekhti MA, Belardja MS, Lafjah M, Chouli F, Benyoucef A (2021) Enhanced tailored of thermal stability, optical and electrochemical properties of PANI matrix containing Al2O3 hybrid materials synthesized through in situ polymerization. Polym Composite 42:6–14. https://doi.org/10.1002/PC.25812

    Article  CAS  Google Scholar 

  21. Wang Y, Zhang J, Zhang D, Sun C (2010) Preparation and applications of perfluorinated ion doped polyaniline based solid-phase microextraction fiber. J Chromatogr A 1217:4523–4528. https://doi.org/10.1016/j.chroma.2010.04.075

    Article  CAS  PubMed  Google Scholar 

  22. Mehdinia A, Roohi F, Jabbari A, Manafi MR (2011) Self-doped polyaniline as new polyaniline substitute for solid-phase microextraction. Anal Chim Acta 683:206–211. https://doi.org/10.1016/j.aca.2010.10.031

    Article  CAS  PubMed  Google Scholar 

  23. Ai Y, Zhao F, Zeng B (2015) Novel proton-type ionic liquid doped polyaniline for the headspace solid-phase microextraction of amines. Anal Chim Acta 880:60–66. https://doi.org/10.1016/j.aca.2015.04.028

    Article  CAS  PubMed  Google Scholar 

  24. Bagheri H, Aghakhani A, Baghernejad M, Akbarinejad A (2012) Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples. Anal Chim Acta 716:34–39. https://doi.org/10.1016/j.aca.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  25. Zeng J, Zhao C, Chong F, Cao Y, Subhan F, Wang Q, Yu J, Zhang M, Luo L, Ren W, Chen X, Yan Z (2013) Oriented ZnO nanorods grown on a porous polyaniline film as a novel coating for solid-phase microextraction. J Chromatogr A 1319:21–26. https://doi.org/10.1016/j.chroma.2013.10.040

    Article  CAS  PubMed  Google Scholar 

  26. Song XY, Chen J, Shi YP (2016) Different configurations of carbon nanotubes reinforced solid-phase microextraction techniques and their applications in the environmental analysis. Trends Anal Chem 86:263–275. https://doi.org/10.1016/j.trac.2016.11.006

    Article  CAS  Google Scholar 

  27. Hajializadeha A, Ansarib M, Foroughia MM, Kazemipour M (2020) Ultrasonic assisted synthesis of a novel ternary nanocomposite based on carbon nanotubes/zeolitic imidazolate framework-67/polyaniline for solidphase microextraction of organic pollutants. Microchem J. https://doi.org/10.1016/j.microc.2020.105008

    Article  Google Scholar 

  28. Ghiasvand A, Dowlatshah S, Nouraei N, Heidari N, Yazdankhah F (2015) A solid-phase microextraction platinized stainless steel fiber coated with a multiwalled carbon nanotube-polyaniline nanocomposite film for the extraction of thymol and carvacrol in medicinal plants and Honey. J Chromatogr A 1406:87–93. https://doi.org/10.1016/j.chroma.2015.06.052

    Article  CAS  PubMed  Google Scholar 

  29. Du W, Zhao F, Zeng B (2009) Novel multiwalled carbon nanotubes-polyaniline composite film coated platinum wire for headspace solid-phase microextraction and gas chromatographic determination of phenolic compounds. J Chromatogr A 1216:3751–3757. https://doi.org/10.1016/j.chroma.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  30. Khajeamiri AR, Kobarfard F, Moghaddam AB (2012) Application of polyaniline and polyaniline/multiwalled carbon nanotubescoated fibers for analysis of ecstasy. Chem Eng Technol 35:1515–1519. https://doi.org/10.1002/ceat.201000509

    Article  CAS  Google Scholar 

  31. Mehdinia A, Mousavi MF (2008) Enhancing extraction rate in solid-phase microextraction by using nano-structured polyaniline coating. J Sep Sci 31:3565–3572. https://doi.org/10.1002/jssc.200800284

    Article  CAS  PubMed  Google Scholar 

  32. Li QL, Huang F, Wang XL, Wang X, Zhao RS (2017) Multiple-helix cobalt(II)-based metal-organic nanotubes on stainless steel fibers for solid-phase microextraction of chlorophenol and nitrophenols from water samples. Microchim Acta 184:1817–1825. https://doi.org/10.1007/s00604-017-2167-6

    Article  CAS  Google Scholar 

  33. Liu Y, Huang Y, Chen G, Huang J, Zheng J, Xu J, Liu S, Qiu J, Yin L, Ruan W, Zhu F, Ouyang G (2018) A graphene oxide-based polymer composite coating for highly-efficient solid phase microextraction of phenols. Anal Chim Acta 1015:20–26. https://doi.org/10.1016/j.aca.2018.02.034

    Article  CAS  PubMed  Google Scholar 

  34. Bagheri H, Manouchehri M, Allahdadlalouni M (2017) A magnetic multifunctional dendrimeric coating on a steel fiber for solid phase microextraction of chlorophenols. Microchim Acta 184:2201–2209. https://doi.org/10.1007/s00604-017-2220-5

    Article  CAS  Google Scholar 

  35. Bagheri H, Najarzadekan H, Roostaie A (2014) Electrospun polyamide-polyethylene glycol nanofibers for headspace solid-phase microextration. J Sep Sci 37:1880–1886. https://doi.org/10.1002/jssc.201400037

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Li W, Wang Y, Zhou H, Hu G, Zhang N, Sun C (2013) Development of a solid-phase microextraction fiber coated with poly(methacrylic acid-ethylene glycol dimethacrylate) and its application for the determination of chlorophenols in water coupled with GC. J Sep Sci 36:2121–2127. https://doi.org/10.1002/jssc.201200979

    Article  CAS  PubMed  Google Scholar 

  37. Ai Y, Wu M, Li L, Zhao F, Zeng B (2016) Highly selective and effective solid phase microextraction of benzoic acid esters using ionic liquid functionalized multiwalled carbon nanotubes-doped polyaniline coating. J Chromatogr A 1437:1–7. https://doi.org/10.1016/j.chroma.2016.01.072

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Li.

Ethics declarations

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Weng, Q. & Li, J. A New Composite of O-aminobenzene Sulfonic Acid Self-Doped Polyaniline and Multi-Walled Carbon Nanotubes as a Fiber Coating for Solid-Phase Microextraction Gas Chromatography. Chromatographia 85, 689–697 (2022). https://doi.org/10.1007/s10337-022-04177-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04177-5

Keywords

Navigation