Skip to main content

Advertisement

Log in

Nucleobases, Nucleosides and Nucleotides Determination in Yeasts Isolated from Extreme Environments

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Nucleobases, nucleosides and nucleotides can act as chemical markers and immunnostimulants. Ultra-high-performance liquid chromatography with electrospray ionization and quadrupole time of flight-mass spectrometry was used to determine bioactive compounds from different yeast species isolated from extremal marine environments, Yarrowia lipolytica, Sterygmatomyces halophilus, Kluyveromyces lactis and Debaryomyces hansenii. The selectivity of the detection system allowed the analytes to be unequivocally identified. Mass spectra were recorded in the positive ion mode and quantification was based on the protonated molecule. Retention times ranged between 0.8 and 2.8 min using a mobile phase composed by a mixture of methanol and (0.1% v/v) formic acid under gradient elution mode. For the analyzed yeasts, the nucleotides, nucleosides and nucleobases contents were quantified in three fractions: intracellular, free extracellular and RNA. The results showed that these yeasts are an excellent source of nucleobases, nucleosides and nucleotides; especially, adenosine (1497 mg kg−1) and guanosine (1445 mg kg−1) found in Y. lipolytica and D. hansenii, respectively. This novel source of innovative immunostimulant as food additive in aquaculture or other animal production systems remain to be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Domínguez-Álvarez J, Mateos-Vivas M, Rodríguez-Gonzalo E, García-Gómez D, Bustamante-Rangel M, Delgado Zamarreño MM, Carabias-Martínez R (2017) Determination of nucleosides and nucleotides in food samples by using liquid chromatography and capillary electrophoresis. TrAC Trends Anal Chem 92:12–31. https://doi.org/10.1016/J.TRAC.2017.04.005

    Article  Google Scholar 

  2. Qin X, Wang X (2018) Quantification of nucleotides and their sugar conjugates in biological samples: purposes, instruments and applications. J Pharm Biomed Anal 158:280–287. https://doi.org/10.1016/J.JPBA.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  3. Deng K, Wong CW, Nolan JV (2005) Carry-over effects of dietary yeast RNA as a source of nucleotides on lymphoid organs and immune responses in Leghorn-type chickens. Br Poult Sci 46:673–678. https://doi.org/10.1080/00071660500395426

    Article  CAS  PubMed  Google Scholar 

  4. Patterson R, Heo JM, Wickramasuriya SS, Yi YJ, Nyachoti CM (2019) Dietary nucleotide rich yeast extract mitigated symptoms of colibacillosis in weaned pigs challenged with an enterotoxigenic strain of Escherichia coli. Anim Feed Sci Technol 254:114204. https://doi.org/10.1016/J.ANIFEEDSCI.2019.114204

    Article  CAS  Google Scholar 

  5. Freese E, Olempska-Beer Z, Eisenberg M (1984) Nucleotide composition of cell extracts analyzed by full-spectrum recording in high-performance liquid chromatography. J Chromatogr A 284:125–142. https://doi.org/10.1016/S0021-9673(01)87808-0

    Article  CAS  Google Scholar 

  6. Perricone V, Comi M, Bontempo V, Lecchi C, Ceciliani F, Crestani M, Ferrari A, Savoini G, Agazzi A (2020) Effects of nucleotides administration on growth performance and immune response of post-weaning piglets. Ital J Anim Sci 19:295–301. https://doi.org/10.1080/1828051X.2020.1738966

    Article  CAS  Google Scholar 

  7. Alamillo E, Reyes-Becerril M, Cuesta A, Angulo C (2017) Marine yeast Yarrowia lipolytica improves the immune responses in Pacific red snapper (Lutjanus peru) leukocytes. Fish Shellf Immunol 70:48–56. https://doi.org/10.1016/J.FSI.2017.08.036

    Article  CAS  Google Scholar 

  8. Guluarte C, Reyes-Becerril M, Gonzalez-Silvera D, Cuesta A, Angulo C, Esteban M (2019) Probiotic properties and fatty acid composition of the yeast Kluyveromyces lactis M3. In vivo immunomodulatory activities in gilthead seabream (Sparus aurata). Fish Shellf Immunol. 94:389–397. https://doi.org/10.1016/J.FSI.2019.09.024

    Article  CAS  Google Scholar 

  9. Reyes-Becerril M, Guardiola FA, Sanchez V, Maldonado M, Angulo C (2018) Sterigmatomyces halophilus β-glucan improves the immune response and bacterial resistance in Pacific red snapper (Lutjanus peru) peripheral blood leucocytes: in vitro study. Fish Shellfish Immunol 78:392–403. https://doi.org/10.1016/J.FSI.2018.04.043

    Article  CAS  PubMed  Google Scholar 

  10. Reyes-Becerril M, Guluarte C, Ceballos-Francisco D, Angulo C, Esteban M (2017) Dietary yeast Sterigmatomyces halophilus enhances mucosal immunity of gilthead seabream (Sparus aurata L.). Fish Shellf Immunol. 64:165–175. https://doi.org/10.1016/J.FSI.2017.03.027

    Article  CAS  Google Scholar 

  11. Davis FF, Carlucci AF, Izoubein IF (1959) Trace nucleotides in certain ribonucleic acids from yeast. J Biol Chem 234:1525–1529

    Article  CAS  Google Scholar 

  12. Vieira E, Brandão T, IMPLVO, (2013) Ferreira, Evaluation of brewer’s spent yeast to produce flavor enhancer nucleotides: influence of serial repitching. J Agric Food Chem 61:8724–8729. https://doi.org/10.1021/JF4021619

    Article  CAS  PubMed  Google Scholar 

  13. Dancey CP, Attree EA, Brown KF (2006) Nucleotide supplementation: a randomised double-blind placebo controlled trial of IntestAidIB in people with Irritable Bowel Syndrome [ISRCTN67764449]. Nutr J. https://doi.org/10.1186/1475-2891-5-16

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jia S, Marjavaara L, Buckland R, Sharma S, Chabes A (2015) Determination of deoxyribonucleoside triphosphate concentrations in yeast cells by strong anion-exchange high-performance liquid chromatography coupled with ultraviolet detection. Methods Mol Biol 1300:113–121. https://doi.org/10.1007/978-1-4939-2596-4_8

    Article  CAS  PubMed  Google Scholar 

  15. Reda RM, Selim KM, Mahmoud R, El-Araby IE (2018) Effect of dietary yeast nucleotide on antioxidant activity, non-specific immunity, intestinal cytokines, and disease resistance in Nile Tilapia. Fish Shellf Immunol 80:281–290. https://doi.org/10.1016/J.FSI.2018.06.016

    Article  CAS  Google Scholar 

  16. Todd B, Zhao J, Fleet G (1995) HPLC measurement of guanine for the determination of nucleic acids (RNA) in yeasts. J Microbiol Methods 22:1–10. https://doi.org/10.1016/0167-7012(94)00059-G

    Article  CAS  Google Scholar 

  17. Olempska-Beer Z, Freese EB (1984) Optimal extraction conditions for high-performance liquid chromatographic determination of nucleotides in yeast. Anal Biochem 140:236–245. https://doi.org/10.1016/0003-2697(84)90159-3

    Article  CAS  PubMed  Google Scholar 

  18. Ali I, Naim L, Ghanem A, Aboul-Enein HY (2006) Chiral separations of piperidine-2, 6-dione analogues on Chiralpak IA and Chiralpak IB columns by using HPLC. Talanta 69:1013–1017

    Article  CAS  Google Scholar 

  19. Aboul-Enein HY, Ali I (2002) Optimization strategies for HPLC enantioseparation of racemic drugs using polysaccharides and macrocyclic glycopeptide antibiotic chiral stationary phases. Il Farmaco 57:513–529

    Article  CAS  Google Scholar 

  20. Basheer AA, Hussain I, Scotti MT, Scotti L, Ali I (2020) Advances in chiral separations at nano level. Curr Anal Chem 16:351–368

    Article  CAS  Google Scholar 

  21. Seifar RM, Ras C, van Dam JC, van Gulik WM, Heijnen JJ, van Winden WA (2009) Simultaneous quantification of free nucleotides in complex biological samples using ion pair reversed phase liquid chromatography isotope dilution tandem mass spectrometry. Anal Biochem 388:213–219. https://doi.org/10.1016/J.AB.2009.02.025

    Article  CAS  PubMed  Google Scholar 

  22. Magdenoska O, Knudsen PB, Svenssen DK, Nielsen KF (2015) Quantifying intracellular metabolites in yeast using a matrix with minimal interference from naturally occurring analytes. Anal Biochem 487:17–26. https://doi.org/10.1016/J.AB.2015.06.033

    Article  CAS  PubMed  Google Scholar 

  23. Magdenoska O, Martinussen J, Thykaer J, Nielsen KF (2013) Dispersive solid phase extraction combined with ion-pair ultra-high-performance liquid chromatography tandem mass spectrometry for quantification of nucleotides in Lactococcus lactis. Anal Biochem 440:166–177. https://doi.org/10.1016/J.AB.2013.05.023

    Article  CAS  PubMed  Google Scholar 

  24. Coulier L, Bas R, Jespersen S, Verheij E, van der Werf MJ, Hankemeier T (2006) Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 78:6573–6582. https://doi.org/10.1021/AC0607616

    Article  CAS  PubMed  Google Scholar 

  25. Zhu P, Wang S, Wang J, Zhou L, Shi P (2016) A capillary zone electrophoresis method for adenine nucleotides analysis in Saccharomyces cerevisiae. J Chromatogr B Analyt Technol Biomed Life Sci 1008:156–163. https://doi.org/10.1016/J.JCHROMB.2015.11.040

    Article  CAS  PubMed  Google Scholar 

  26. Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, Arita M (2016) Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem 88:7946–7958. https://doi.org/10.1021/ACS.ANALCHEM.6B00770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsugawa H, Nakabayashi R, Mori T, Yamada Y, Takahashi M, Rai A, Sugiyama R, Yamamoto H, Nakaya T, Yamazaki M, Kooke R, Bac-Molenaar JA, Oztolan-Erol N, Keurentjes JJB, Arita M, Saito K (2019) A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat Methods. https://doi.org/10.1038/s41592-019-0358-2

    Article  PubMed  Google Scholar 

  28. Zhou L, Xue L, Zhou L, Liu Y, Zhao J, Wu L (2012) Fast determination of adenosine 5’-triphosphate (ATP) and its catabolites in royal jelly using ultraperformance liquid chromatography. J Agric Food Chem 60:8994–8999. https://doi.org/10.1021/JF3022805

    Article  CAS  PubMed  Google Scholar 

  29. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. https://doi.org/10.1006/ABIO.1987.9999

    Article  CAS  PubMed  Google Scholar 

  30. Viñas P, Campillo N, Melgarejo GF, Vasallo MI, López-García I, Hernández-Córdoba M (2010) Ion-pair high-performance liquid chromatography with diode array detection coupled to dual electrospray atmospheric pressure chemical ionization time-of-flight mass spectrometry for the determination of nucleotides in baby foods. J Chromatogr A 1217:5197–5203. https://doi.org/10.1016/J.CHROMA.2010.06.014

    Article  PubMed  Google Scholar 

  31. Viñas P, Campillo N, López-García I, Martínez-López S, Vasallo I, Hernández-Córdoba M (2009) Anion exchange liquid chromatography for the determination of nucleotides in baby and/or functional foods. J Agric Food Chem 57:7245–7249. https://doi.org/10.1021/JF901726E

    Article  PubMed  Google Scholar 

  32. Angulo C, Maldonado M, Delgado K, Reyes-Becerril M (2017) Debaryomyces hansenii up regulates superoxide dismutase gene expression and enhances the immune response and survival in Pacific red snapper (Lutjanus peru) leukocytes after Vibrio parahaemolyticus infection. Dev Comp Immunol 71:18–27. https://doi.org/10.1016/J.DCI.2017.01.020

    Article  CAS  PubMed  Google Scholar 

  33. Reyes-Becerril M, Angulo M, Sanchez V, Guluarte C, Angulo C (2020) β-d-glucan from marine yeast Debaryomyces hansenii BCS004 enhanced intestinal health and glucan-expressed receptor genes in Pacific red snapper Lutjanus peru. Microb Pathog 143:104141. https://doi.org/10.1016/J.MICPATH.2020.104141

    Article  CAS  PubMed  Google Scholar 

  34. Neubauer S, Rugova A, Chu DB, Drexler H, Ganner A, Sauer M, Mattanovich D, Hann S, Koellensperger G (2012) Mass spectrometry based analysis of nucleotides, nucleosides, and nucleobases—application to feed supplements. Anal Bioanal Chem 404:799–808. https://doi.org/10.1007/s00216-012-6170-9

    Article  CAS  PubMed  Google Scholar 

  35. Pastor-Belda M, Fernández-Caballero I, Campillo N, Arroyo-Manzanares N, Hernández-Córdoba M, Viñas P (2021) Hydrophilic interaction liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry for determination of nuclear and cytoplasmatic contents of nucleotides, nucleosides and their nucleobases in food yeasts. Talanta Open 4:100064. https://doi.org/10.1016/j.talo.2021.100064

    Article  Google Scholar 

  36. Reyes-Becerril M, Esteban MÁ, Tovar-Ramírez D, Ascencio-Valle F (2011) Polyamine determination in different strains of the yeast Debaryomyces hansenii by high pressure liquid chromatography. Food Chem 127:1862–1865. https://doi.org/10.1016/J.FOODCHEM.2011.02.006

    Article  CAS  Google Scholar 

  37. Osawa S (1960) The nucleotide composition of ribonucleic acids from subcellular components of yeast, Escherichia coli and rat liver, with special reference to the occurrence of pseudouridylic acid in soluble ribonucleic acid. Biochim Biophys Acta 42:244–254. https://doi.org/10.1016/0006-3002(60)90788-5

    Article  CAS  PubMed  Google Scholar 

  38. Gosu V, Basith S, Kwon OP, Choi S (2012) Therapeutic applications of nucleic acids and their analogues in Toll-like receptor signaling. Molecules 17:13503–13529. https://doi.org/10.3390/MOLECULES171113503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu XB, Hao K, Li J, Chen XH, Wang GX, Ling F (2018) Effects of moroxydine hydrochloride and ribavirin on the cellular growth and immune responses by inhibition of GCRV proliferation. Res Vet Sci 117:37–44. https://doi.org/10.1016/J.RVSC.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  40. Hossain MS, Koshio S, Ishikawa M, Yokoyama S, Sony NM, Dossou S, Wang W (2018) Influence of dietary inosine and vitamin C supplementation on growth, blood chemistry, oxidative stress, innate and adaptive immune responses of red sea bream, Pagrus major juvenile. Fish Shellf Immunol 82:92–100. https://doi.org/10.1016/J.FSI.2018.08.014

    Article  CAS  Google Scholar 

  41. Hossain MS, Koshio S, Ishikawa M, Yokoyama S, Sony NM (2016) Effects of dietary administration of guanosine monophosphate on the growth, digestibility, innate immune responses and stress resistance of juvenile red sea bream, Pagrus major. Fish Shellf Immunol 57:96–106. https://doi.org/10.1016/J.FSI.2016.08.026

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Spanish Ministerio de Ciencia, Innovación y Universidades (MICINN) (PGC2018-098363-B-I00), the Spanish MINECO co-funded by the European Regional Development Funds (ERDF/FEDER) (AGL2017-83370-C3-1-R), and by the CONACYT, Mexico (INFR-2014-434 01/225924 and PDCPN2014-01 /248033).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MAE, M P-B, CG, CA; methodology: M P-B, CG, N A-M, NC, PV; validation: M P-B, N A-M, NC, PV; roles/writing—original draft: MAE, M P-B, CA, CG; writing—review & editing: MAE, M P-B and CA. Funding acquisition: MAE, M P-B, CA.

Corresponding authors

Correspondence to Carlos Angulo or María Ángeles Esteban.

Ethics declarations

Conflict of Interest

The authors have declared no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastor-Belda, M., Arroyo-Manzanares, N., Campillo, N. et al. Nucleobases, Nucleosides and Nucleotides Determination in Yeasts Isolated from Extreme Environments. Chromatographia 85, 353–363 (2022). https://doi.org/10.1007/s10337-022-04138-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04138-y

Keywords

Navigation