Skip to main content

Advertisement

Log in

Characterization of Retention Mechanisms in Mixed-Mode HPLC with a Bimodal Reversed-Phase/Cation-Exchange Stationary Phase

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Mixed-mode HPLC (MM-HPLC), combining different interactions or retention modes in a single column, can be an interesting alternative to reversed-phase HPLC, notably to achieve the combined retention of polar and non-polar species. In the present fundamental study, we have selected one bimodal stationary phase allowing for both reversed-phase and weak cation-exchange retention modes (Acclaim mixed-mode WCX-1 LC). First, the mobile phase buffer composition (buffer pH ranging from 5 to 7 and concentration ranging from 20 to 100 mM) was explored with a small set of probe compounds (15 acids, bases and neutrals) to ensure adequate retention and peak shapes for the target compounds, and to evaluate the relative contributions of reversed-phase and ion-exchange mechanisms. Second, retention values measured for 63 probe compounds with various proportions of acetonitrile (ranging from 30 to 80%) served to establish linear solvation energy relationships based on (a) the usual and (b) a modified version of the solvation parameter model comprising additional descriptors to take account of interactions with ionizable species to bring some insights into the retention mechanisms. Finally, temperature effects at the low (30%) and high (60%) proportions of acetonitrile were observed between 20 and 40 °C (with 5 °C increments) and Van’t Hoff plots were drawn to measure the changes in interactions energies when the mobile phase composition changed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Petritis K, Brussaux S, Guenu S et al (2002) Ion-pair reversed-phase liquid chromatography–electrospray mass spectrometry for the analysis of underivatized small peptides. J Chromatogr A 957:173–185. https://doi.org/10.1016/S0021-9673(02)00372-2

    Article  CAS  Google Scholar 

  2. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr A 499:177–196. https://doi.org/10.1016/S0021-9673(00)96972-3

    Article  CAS  Google Scholar 

  3. Cummins P, Rochfort K, O’Connor B (2017) Ion-exchange chromatography: basic principles and application. In: Walls D, Loughran ST (eds) Protein chromatography. Springer, New York, pp 209–223

    Chapter  Google Scholar 

  4. Grand-Guillaume Perrenoud A, Veuthey J-L, Guillarme D (2012) Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds. J Chromatogr A 1266:158–167. https://doi.org/10.1016/j.chroma.2012.10.005

    Article  CAS  Google Scholar 

  5. Lemasson E, Bertin S, Hennig P et al (2016) Comparison of ultra-high performance methods in liquid and supercritical fluid chromatography coupled to electrospray ionization–mass spectrometry for impurity profiling of drug candidates. J Chromatogr A 1472:117–128. https://doi.org/10.1016/j.chroma.2016.10.045

    Article  CAS  Google Scholar 

  6. Bischoff R, McLaughlin LW (1984) Nucleic acid resolution by mixed-mode chromatography. J Chromatogr A 296:329–337. https://doi.org/10.1016/S0021-9673(01)96427-1

    Article  CAS  Google Scholar 

  7. Kennedy LA, Kopaciewicz W, Regnier FE (1986) Multimodal liquid chromatography columns for the separation of proteins in either the anion-exchange or hydrophobic-interaction mode. J Chromatogr 359:73–84

    Article  CAS  Google Scholar 

  8. Halfpenny AP, Brown PR (1986) Mixed mode chromatography via column switching for the simultaneous HPLC analysis of lonic and non-lonic nucleic acid constituents. Chromatographia 21:317–320. https://doi.org/10.1007/BF02311602

    Article  CAS  Google Scholar 

  9. Lemasson E, Bertin S, Hennig P et al (2017) Mixed-mode chromatography—a review. LC GC Eur 30:22–33

    Google Scholar 

  10. Qiu H, Mallik AK, Takafuji M et al (2012) New poly(ionic liquid)-grafted silica multi-mode stationary phase for anion-exchange/reversed-phase/hydrophilic interaction liquid chromatography. Analyst 137:2553–2555. https://doi.org/10.1039/C2AN35348B

    Article  CAS  Google Scholar 

  11. Liu X, Pohl CA (2012) Comparison of reversed-phase/cation-exchange/anion-exchange trimodal stationary phases and their use in active pharmaceutical ingredient and counterion determinations. J Chromatogr A 1232:190–195. https://doi.org/10.1016/j.chroma.2011.12.009

    Article  CAS  Google Scholar 

  12. Liu X, Tracy M, Aich U, Pohl C (2014) Exploring mixed-mode chromatography: column chemistry, properties, and applications. https://tools.thermofisher.com/content/sfs/posters/PN-20947-Mixed-Mode-Chromatography-HPLC-2014-PN20947-EN.pdf. Accessed 5 Apr 2017

  13. Zhang K, Dai L, Chetwyn NP (2010) Simultaneous determination of positive and negative pharmaceutical counterions using mixed-mode chromatography coupled with charged aerosol detector. J Chromatogr A 1217:5776–5784. https://doi.org/10.1016/j.chroma.2010.07.035

    Article  CAS  Google Scholar 

  14. Li J, Shao S, Jaworsky MS, Kurtulik PT (2008) Simultaneous determination of cations, zwitterions and neutral compounds using mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography. J Chromatogr A 1185:185–193. https://doi.org/10.1016/j.chroma.2008.01.083

    Article  CAS  Google Scholar 

  15. Zhang Y, Carr PW (2011) Novel ultra stable silica-based stationary phases for reversed phase liquid chromatography—study of a hydrophobically assisted weak acid cation exchange phase. J Chromatogr A 1218:763–777. https://doi.org/10.1016/j.chroma.2010.11.009

    Article  CAS  Google Scholar 

  16. Abraham MH, Ibrahim A, Zissimos AM (2004) Determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A 1037:29–47. https://doi.org/10.1016/j.chroma.2003.12.004

    Article  CAS  Google Scholar 

  17. West C, Auroux E (2016) Deconvoluting the effects of buffer salt concentration in hydrophilic interaction chromatography on a zwitterionic stationary phase. J Chromatogr A 1461:92–97. https://doi.org/10.1016/j.chroma.2016.07.059

    Article  CAS  Google Scholar 

  18. Chirita R-I, West C, Zubrzycki S et al (2011) Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography. J Chromatogr A 1218:5939–5963. https://doi.org/10.1016/j.chroma.2011.04.002

    Article  CAS  Google Scholar 

  19. Vitha M, Carr PW (2006) The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A 1126:143–194. https://doi.org/10.1016/j.chroma.2006.06.074

    Article  CAS  Google Scholar 

  20. Abraham MH, Acree WE (2016) Descriptors for ions and ion-pairs for use in linear free energy relationships. J Chromatogr A 1430:2–14. https://doi.org/10.1016/j.chroma.2015.07.023

    Article  CAS  Google Scholar 

  21. Poole CF, Poole SK (2002) Column selectivity from the perspective of the solvation parameter model. J Chromatogr A 965:263–299. https://doi.org/10.1016/S0021-9673(01)01361-9

    Article  CAS  Google Scholar 

  22. Liu X, Pohl C (2009) A weak cation-exchange, reversed-phase mixed-mode HPLC column and its applications. Am Lab 41:26–29

    CAS  Google Scholar 

  23. Bij KE, Horváth C, Melander WR, Nahum A (1981) Surface silanols in silica-bonded hydrocarbonaceous stationary phases: II. Irregular retention behavior and effect of silanol masking. J Chromatogr A 203:65–84. https://doi.org/10.1016/S0021-9673(00)80282-4

    Article  CAS  Google Scholar 

  24. Lepont C, Poole CF (2002) Retention characteristics of an immobilized artificial membrane column in reversed-phase liquid chromatography. J Chromatogr A 946:107–124. https://doi.org/10.1016/S0021-9673(01)01579-5

    Article  CAS  Google Scholar 

  25. Poole CF, Lenca N (2017) Applications of the solvation parameter model in reversed-phase liquid chromatography. J Chromatogr A 1486:2–19. https://doi.org/10.1016/j.chroma.2016.05.099

    Article  CAS  Google Scholar 

  26. Ali Z, Poole CF (2004) Insights into the retention mechanism of neutral organic compounds on polar chemically bonded stationary phases in reversed-phase liquid chromatography. J Chromatogr A 1052:199–204. https://doi.org/10.1016/j.chroma.2004.08.109

    Article  CAS  Google Scholar 

  27. Melander W, Campbell DE, Horváth C (1978) Enthalpy–entropy compensation in reversed-phase chromatography. J Chromatogr A 158:215–225. https://doi.org/10.1016/S0021-9673(00)89968-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Waters Corporation is warmly acknowledged for continuous support through the Centers of Innovation program. Warm thanks are also due to Thierry Domenger (Thermo Scientific) for the kind gift of columns. Miss Katarzyna Knobloch is acknowledged for technical assistance with HPLC experiments. CW acknowledges the support of the Institut Universitaire de France (IUF), of which she is a Junior member.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline West.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 17 kb)

Supplementary material 2 (PDF 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemasson, E., Richer, Y., Bertin, S. et al. Characterization of Retention Mechanisms in Mixed-Mode HPLC with a Bimodal Reversed-Phase/Cation-Exchange Stationary Phase. Chromatographia 81, 387–399 (2018). https://doi.org/10.1007/s10337-018-3477-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3477-5

Keywords

Navigation