Skip to main content
Log in

Mixed-Mode Acrylamide-Based Continuous Beds Bearing tert-Butyl Groups for Capillary Electrochromatography Synthesized Via Complexation of N-tert-Butylacrylamide with a Water-Soluble Cyclodextrin. Part II: Effect of Capillary Size and Polymerization Conditions on Morphology and Chromatographic Efficiency

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this series, we investigate the impact of the complex formation constant of the hydrophobic monomer with respect to statistically methylated-β-cyclodextrin (Me-β-CD) on the electrochromatographic properties of highly crosslinked amphiphilic mixed-mode acrylamide-based monolithic stationary phases. In the first part, we investigated the retention properties. In the present study, we optimize the synthesis parameters with respect to obtainable morphology and separation efficiency. For this purpose, a series of mixed-mode acrylamide-based continuous beds bearing tert-butyl groups is synthesized under systematic variation of (i) the concentration of the lyotropic salt ammonium sulfate in the polymerization mixture and (ii) the dimension of the capillary. The impact of these parameters on the chromatographic efficiency is studied under isocratic conditions for alkylphenones in the reversed-phase mode via capillary electrochromatography with varied electric field strength. As expected, there is a strong impact of the concentration of ammonium sulfate in the polymerization mixture on the morphology (examined via scanning electron microscopy) and on the chromatographic efficiency, while there is only a minor influence when varying the size or the shape of the capillary cross-sectional area. Morphology and chromatographic efficiency of this new type of stationary phase are compared to those reported in our previous series. The studies reveal a significant influence of the formation constant of the formed inclusion complex on the morphology and the chromatographic efficiency for those monoliths having a large domain size, while there is an insignificant influence for those monoliths having a small domain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

f and g are reproduced with permission from Ref. [56]

Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hjerten S, Liao JL, Zhang R (1989) High-performance liquid chromatography on continuous polymer beds. J Chromatogr 473:273–275

    Article  CAS  Google Scholar 

  2. Svec F, Frechet JMJ (1992) Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal Chem 64:820–822

    Article  CAS  Google Scholar 

  3. Petro M, Svec F, Gitsov I, Frechet JMJ (1996) Molded monolithic rod of macroporous poly(styrene-co-divinylbenzene) as a separation medium for HPLC of synthetic polymers: “on-column” precipitation-redissolution chromatography as an alternative to size exclusion chromatography of styrene oligomers and polymers. Anal Chem 68:315–321

    Article  CAS  Google Scholar 

  4. Tennikova TB, Belenkii BG, Svec F (1990) High-performance membrane chromatography. A novel method of protein separation. J Liq Chromatogr 13:63–70

    Article  CAS  Google Scholar 

  5. Peters EC, Petro M, Svec F, Frechet JMJ (1998) Molded rigid polymer monoliths as separation media for capillary electrochromatography. 2. Effect of chromatographic conditions on the separation. Anal Chem 70:2296–2302

    Article  CAS  Google Scholar 

  6. Gusev I, Huang X, Horvath C (1999) Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. J Chromatogr A 855:273–290

    Article  CAS  Google Scholar 

  7. Desmet G, Eeltink S (2013) Fundamentals for LC miniaturization. Anal Chem 85:543–556

    Article  CAS  Google Scholar 

  8. Jandera P, Hajek T, Stankova M (2015) Monolithic and core–shell columns in comprehensive two-dimensional HPLC: a review. Anal Bioanal Chem 407:139–151

    Article  CAS  Google Scholar 

  9. Moravcova D, Rantamaki AH, Dusa F, Wiedmer SK (2016) Review monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry. Electrophoresis 37:880–912

    Article  CAS  Google Scholar 

  10. Nischang I (2013) Porous polymer monoliths: morphology, porous properties, polymer nano-scale gel structure and their impact on chromatographic performance. J Chromatogr A 1287:39–58

    Article  CAS  Google Scholar 

  11. Urban J, Jandera P (2013) Recent advances in the design of organic polymer monoliths for reversed-phase and hydrophilic interaction chromatography separations of small molecules. Anal Bioanal Chem 405:2123–2131

    Article  CAS  Google Scholar 

  12. Svec F, Lv Y (2015) Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem 87:250–273

    Article  CAS  Google Scholar 

  13. Wu R, Hu L, Wang F, Ye M, Zou H (2008) Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J Chromatogr A 1184:369–392

    Article  CAS  Google Scholar 

  14. Guiochon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168

    Article  CAS  Google Scholar 

  15. Svec F (2010) Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A 1217:902–924

    Article  CAS  Google Scholar 

  16. Nischang I, Brueggemann O, Svec F (2010) Advances in the preparation of porous polymer monoliths in capillaries and microfluidic chips with focus on morphological aspects. Anal Bioanal Chem 397:953–960

    Article  CAS  Google Scholar 

  17. Greiderer A, Ligon SC Jr, Huck CW, Bonn GK (2010) Organic monoliths as stationary phases in chromatography. In: Wang PG (ed) Monolithic chromatography and its modern applications. ILM Publications, Hertfordshire

    Google Scholar 

  18. Svec F, Kurganov AA (2008) Less common applications of monoliths. III. Gas chromatography. J Chromatogr A 1184:281–295

    Article  CAS  Google Scholar 

  19. Svec F (2006) Less common applications of monoliths: preconcentration and solid-phase extraction. J Chromatogr B 841:52–64

    Article  CAS  Google Scholar 

  20. Mert EH, Kaya MA, Yldrm H (2012) Preparation and characterization of polyester–glycidyl methacrylate polyHIPE monoliths to use in heavy metal removal. Des Monomers Polym 15:113–126

    Article  CAS  Google Scholar 

  21. Kara A, Uzun L, Besirli N, Denizli A (2004) Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal. J Hazard Mater 106B:93–99

    Article  Google Scholar 

  22. Uzun L, Turkmen D, Yilmaz E, Bektas S, Denizli A (2008) Cysteine functionalized poly(hydroxyethyl methacrylate) monolith for heavy metal removal. Colloids Surf A Physicochem Eng Asp 330:161–167

    Article  CAS  Google Scholar 

  23. Chen Z, Huang C, Liu W, Zhang L, Tong P, Zhang L (2015) Simultaneous determination of nucleoside and purine compounds in human urine based on a hydrophobic monolithic column using capillary electrochromatography. Electrophoresis 36:2727–2735

    Article  CAS  Google Scholar 

  24. Chen Z, Zhang L, Lu Q, Ye Q, Zhang L (2015) On-line concentration and pressurized capillary electrochromatography analysis of five-agonists in human urine using a methacrylate monolithic column. Electrophoresis 36:2720–2726

    Article  CAS  Google Scholar 

  25. D’Orazio G, Asensio-Ramos M, Fanali C (2016) Capillary electrochromatography in food analysis. Trends Anal Chem 82:250–267

    Article  Google Scholar 

  26. Declerck S, Heyden YV, Mangelings D (2016) Enantioseparations of pharmaceuticals with capillary electrochromatography: a review. J Pharm Biomed Anal 130:81–99

    Article  CAS  Google Scholar 

  27. Tanret I, Mangelings D, Heyden YV (2009) Monolithic stationary phases in classic and chiral pharmaceutical analysis with CEC and pCEC. J Chromatogr Sci 47:407–417

    Article  CAS  Google Scholar 

  28. Svec F (2006) Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports. Electrophoresis 27:947–961

    Article  CAS  Google Scholar 

  29. Svec F, Huber CG (2006) Monolithic materials: promises, challenges, achievements. Anal Chem 78:2100–2108

    Article  CAS  Google Scholar 

  30. Causon TJ, Nischang I (2014) Critical differences in chromatographic properties of silica-and polymer-based monoliths. J Chromatogr A 1358:165–171

    Article  CAS  Google Scholar 

  31. Svec F (2012) Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. J Chromatogr A 1228:250–262

    Article  CAS  Google Scholar 

  32. Causon TJ, Hilder EF, Nischang I (2012) Impact of mobile phase composition on the performance of porous polymeric monoliths in the elution of small molecules. J Chromatogr A 1263:108–112

    Article  CAS  Google Scholar 

  33. Nischang I, Teasdale I, Brueggemann O (2010) Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography. J Chromatogr A 1217:7514–7522

    Article  CAS  Google Scholar 

  34. Nischang I (2014) Impact of biomolecule solute size on the transport and performance characteristics of analytical porous polymer monoliths. J Chromatogr A 1354:56–64

    Article  CAS  Google Scholar 

  35. Nischang I, Brueggemann O (2010) On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths. J Chromatogr A 1217:5389–5397

    Article  CAS  Google Scholar 

  36. Nischang I, Causon TJ (2016) Porous polymer monoliths: from their fundamental structure to analytical engineering applications. Trends Anal Chem 75:108–117

    Article  CAS  Google Scholar 

  37. Laher M, Causon TJ, Buchberger W, Hild S, Nischang I (2013) Assessing the nanoscale structure and mechanical properties of polymer monoliths used for chromatography. Anal Chem 85:5645–5649

    Article  CAS  Google Scholar 

  38. Nischang I, Teasdale I, Brueggemann O (2011) Porous polymer monoliths for small molecule separations: advancements and limitations. Anal Bioanal Chem 400:2289–2304

    Article  CAS  Google Scholar 

  39. Liu K, Tolley HD, Lee ML (2012) Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules. J Chromatogr A 1227:96–104

    Article  CAS  Google Scholar 

  40. Aggarwal P, Tolley HD, Lee ML (2012) Characterizing organic monolithic columns using capillary flow porometry and scanning electron microscopy. Anal Chem 84:247–254

    Article  CAS  Google Scholar 

  41. Svec F, Frechet JMJ (1995) Kinetic control of pore formation in macroporous polymers. formation of “molded” porous materials with high flow characteristics for separations or catalysis. Chem Mater 7:707–715

    Article  CAS  Google Scholar 

  42. Hoegger D, Freitag R (2003) Investigation of conditions allowing the synthesis of acrylamide-based monolithic microcolumns for capillary electrochromatography and of factors determining the retention of aromatic compounds on these stationary phases. Electrophoresis 24:2958–2972

    Article  CAS  Google Scholar 

  43. Hoegger D, Freitag R (2001) Acrylamide-based monoliths as robust stationary phases for capillary electrochromatography. J Chromatogr A 914:211–222

    Article  CAS  Google Scholar 

  44. Xie S, Svec F, Frechet JMJ (1997) Preparation of porous hydrophilic monoliths: effect of the polymerization conditions on the porous properties of poly(acrylamide-co-N, N′-methylenebisacrylamide) monolithic rods. J Polym Sci Part A Polym Chem 35:1013–1021

    Article  CAS  Google Scholar 

  45. Ratautaite V, Maruska A, Erickson M, Kornysova O (2009) Effect of polymerization conditions on morphology and chromatographic characteristics of polyacrylamide-based beds (monoliths) for capillary electrochromatography and capillary liquid chromatography. J Sep Sci 32:2582–2591

    Article  CAS  Google Scholar 

  46. Eeltink S, Geiser L, Svec F, Frechet JMJ (2007) Optimization of the porous structure and polarity of polymethacrylate-based monolithic capillary columns for the LC–MS separation of enzymatic digests. J Sep Sci 30:2814–2820

    Article  CAS  Google Scholar 

  47. Eeltink S, Herrero-Martinez JM, Rozing GP, Schoenmakers PJ, Kok WT (2005) Tailoring the morphology of methacrylate ester-based monoliths for optimum efficiency in liquid chromatography. Anal Chem 77:7342–7347

    Article  CAS  Google Scholar 

  48. Jiang T, Jiskra J, Claessens HA, Cramers CA (2001) Preparation and characterization of monolithic polymer columns for capillary electrochromatography. J Chromatogr A 923:215–227

    Article  CAS  Google Scholar 

  49. Maruska A, Kornysova O (2004) Continuous beds (monoliths): stationary phases for liquid chromatography formed using the hydrophobic interaction-based phase separation mechanism. J Biochem Biophys Methods 59:1–48

    Article  CAS  Google Scholar 

  50. Al-Massaedh AA, Pyell U (2014) Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part III. Optimization of the chromatographic efficiency. J Chromatogr A 1325:186–194

    Article  CAS  Google Scholar 

  51. Greiderer A, Trojer L, Huck CW, Bonn GK (2009) Influence of the polymerisation time on the porous and chromatographic properties of monolithic poly(1,2-bis(p-vinylphenyl))ethane capillary columns. J Chromatogr A 1216:7747–7754

    Article  CAS  Google Scholar 

  52. Bisjak CP, Trojer L, Lubbad SH, Wieder W, Bonn GK (2007) Influence of different polymerization parameters on the separation efficiency of monolithic poly(phenyl acrylate-co-1,4-phenylene diacrylate) capillary columns. J Chromatogr A 1154:269–276

    Article  CAS  Google Scholar 

  53. Trojer L, Bisjak CP, Wieder W, Bonn GK (2009) High capacity organic monoliths for the simultaneous application to biopolymer chromatography and the separation of small molecules. J Chromatogr A 1216:6303–6309

    Article  CAS  Google Scholar 

  54. Vaast A, Terryn H, Svec F, Eeltink S (2014) Nanostructured porous polymer monolithic columns for capillary liquid chromatography of peptides. J Chromatogr A 1374:171–179

    Article  CAS  Google Scholar 

  55. Al-Massaedh AA, Pyell U (2016) Mixed-mode acrylamide-based continuous beds bearing tert-butyl groups for capillary electrochromatography synthesized via complexation of N-tert-butylacrylamide with a water-soluble cyclodextrin. Part I: Retention properties. J Chromatogr A 1477:114–126

    Article  CAS  Google Scholar 

  56. Al-Massaedh AA, Pyell U (2014) Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part II. Characterization of the synthesized monoliths by inverse size exclusion chromatography and scanning electron microscopy. J Chromatogr A 1325:247–255

    Article  CAS  Google Scholar 

  57. Al-Massaedh AA, Pyell U (2014) Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part IV: Investigation of the chromatographic efficiency dependent on the retention mode. J Chromatogr A 1349:80–89

    Article  CAS  Google Scholar 

  58. Al-Massaedh AA, Pyell U (2013) Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part I: Study of a synthesis procedure including solubilization of N-adamantyl-acrylamide via complex formation with a water-soluble cyclodextrin. J Chromatogr A 1286:183–191

    Article  CAS  Google Scholar 

  59. Wahl A, Schnell I, Pyell U (2004) Capillary electrochromatography with polymeric continuous beds synthesized via free radical polymerization in aqueous media using derivatized cyclodextrins as solubilizing agents. J Chromatogr A 1044:211–222

    Article  CAS  Google Scholar 

  60. Nischang I, Svec F, Frechet JMJ (2009) Downscaling limits and confinement effects in the miniaturization of porous polymer monoliths in narrow bore capillaries. Anal Chem 81:7390–7396

    Article  CAS  Google Scholar 

  61. Nischang I, Svec F, Frechet JMJ (2009) Effect of capillary cross-section geometry and size on the separation of proteins in gradient mode using monolithic poly(butyl methacrylate-co-ethylene dimethacrylate) columns. J Chromatogr A 1216:2355–2361

    Article  CAS  Google Scholar 

  62. Trojer L, Lubbad SH, Bisjak CP, Wieder W, Bonn GK (2007) Comparison between monolithic conventional size, microbore and capillary poly(p-methylstyrene-co-1,2-bis(p-vinylphenyl)ethane) high-performance liquid chromatography columns synthesis, application, long-term stability and reproducibility. J Chromatogr A 1146:216–224

    Article  CAS  Google Scholar 

  63. He M, Zeng Y, Sun X, Harrison DJ (2008) Confinement effects on the morphology of photopatterned porous polymer monoliths for capillary and microchip electrophoresis of proteins. Electrophoresis 29:2980–2986

    CAS  Google Scholar 

  64. Rebscher H, Pyell U (1994) A method for the experimental determination of contributions to band broadening in electrochromatography with packed capillaries. Chromatographia 38:737–743

    Article  CAS  Google Scholar 

  65. Lin J, Huang G, Lin X, Xie Z (2008) Methacrylate-based monolithic column with mixed-mode hydrophilic interaction/strong cation-exchange stationary phase for capillary liquid chromatography and pressure-assisted CEC. Electrophoresis 29:4055–4065

    Article  CAS  Google Scholar 

  66. Bedair M, El R (2002) Capillary electrochromatography with monolithic stationary phases: 1. Preparation of sulfonated stearyl acrylate monoliths and their electrochromatographic characterization with neutral and charged solutes. Electrophoresis 23:2938–2948

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. M. Hellwig (Electron Microscopy and Microanalysis Laboratory, University of Marburg, Marburg, Germany) for carrying out the SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to “Ayat Allah” Al-Massaedh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Massaedh, “., Pyell, U. Mixed-Mode Acrylamide-Based Continuous Beds Bearing tert-Butyl Groups for Capillary Electrochromatography Synthesized Via Complexation of N-tert-Butylacrylamide with a Water-Soluble Cyclodextrin. Part II: Effect of Capillary Size and Polymerization Conditions on Morphology and Chromatographic Efficiency. Chromatographia 80, 1669–1682 (2017). https://doi.org/10.1007/s10337-017-3408-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3408-x

Keywords

Navigation