Skip to main content
Log in

Theory of Gradient Elution Liquid Chromatography with Linear Solvent Strength: Part 1. Migration and Elution Parameters of a Solute Band

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Based on the previous theoretical developments most notably by Snyder, this report offers the most complete theoretical framework of gradient elution LC with linear solvent strength (LSS). All statements of the theory are formulated as explicit mathematical expressions. The physics of chromatography in general and of the LSS model in particular were used only to justify the most basic mathematical expressions of the framework. Everything else was obtained by means of verifiable mathematical transformations. The framework was used for derivation of the largest systematic collection of mathematical expressions describing migration and elution parameters of a solute band. Majority of these expressions are new. They include not only the elution parameters of a band, but also previously unknown migration parameters as functions of distance and time traveled by the band. The set of the band parameters in this report was chosen on the basis of the needs for the study of the peak width formation (part 2 of this series) and for detailed study of performance of gradient LC similar to that recently published for temperature-programed GC. As an illustration of the utility of several parameters considered here, a simple way of prediction of a possibility of the reversal of a solute elution order due to the change in the gradient steepness has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A solute band velocity (v b) defined in Eq. (19) as the velocity of the center of mass (z b) of the band can be different [7, 12, 21, 22] from the velocity described in Eq. (20) for a solute located at z b at time t b. Two factors contribute to that difference. One is the gradient in the solute dispersion [21, 22], and the other is the band finite (non-zero) width. However, it can be shown [16] that, in typical practical applications, the contributions of both factors are negligible and can be ignored as it is done in this report and elsewhere [310, 12, 13].

Abbreviations

b:

Parameter of a solute band

init:

Initial (measured at the start of the solvent gradient)

R :

At retention (elution) time

Symbol:

Description

g ϕ :

Solvent strength gradient, Eq. (6)

|g ϕ |:

Solvent gradient steepness

k :

Solute retention factor

L :

Column length

R ϕ :

Temporal rate of increase in ϕ

r ϕ :

Dimensionless gradient steepness or rate, Eq. (15)

t :

Solute migration time

t M :

Holdup time, Eq. (4)

t b :

Time of migration of a band to location z b

t G :

Gradient time

u :

Mobile phase velocity (length/time)

v :

Solute velocity (length/time)

z :

Longitudinal distance from the column inlet

z b :

Center of mass of a solute band

ζ :

Dimensionless distance from the column inlet, Eq. (23)

μ :

Solute mobility, Eq. (1)

τ :

Dimensionless time since injection, Eq. (23)

Φ:

Characteristic strength constant—parameter in Eq. (8)

ϕ :

Solvent strength (volume fraction of stronger solvent)

ϕ b :

Solvent strength at z = z bt = t b

ϕ char :

Characteristic solvent strength—parameter in Eq. (8)

ϕ R :

Outlet solvent strength at time t = t R

ω :

Solute immobility, Eq. (1)

\( \bar{\omega}_{L} \) :

Distance-averaged ω b, Eq. (35)

References

  1. Blumberg LM (2011) J Chromatogr A 1218:5375–5385

    Article  CAS  Google Scholar 

  2. Blumberg LM (2012) J Chromatogr A 1244:148–160

    Article  CAS  Google Scholar 

  3. Snyder LR, Dolan JW (2007) High-performance gradient elution: the practical application of the linear-solvent-strength model. Wiley, Hoboken

    Google Scholar 

  4. Snyder LR, Dolan JW (1998) In: Brown PR, Grushka E (eds) Adv Chromatogr, vol 38. Marcel Dekker, New York, pp 115–187

    Google Scholar 

  5. Jandera P (2005) In: Brown PR, Grushka E, Lunte S (eds) Adv Chromatogr, vol 43. Marcel Dekker, New York, pp 1–108

    Chapter  Google Scholar 

  6. Gritti F, Guiochon G (2007) J Chromatogr A 1145:67–82

    Article  CAS  Google Scholar 

  7. Gritti F, Guiochon G (2008) J Chromatogr A 1212:35–40

    Article  CAS  Google Scholar 

  8. Snyder LR (1964) J Chromatogr 13:415–434

    Article  CAS  Google Scholar 

  9. Jandera P, Churáček J (1974) J Chromatogr 91:223–235

    Article  CAS  Google Scholar 

  10. Schoenmakers PJ, Billiet HAH, Tijssen R, De Galan L et al (1978) J Chromatogr 149:519–537

    Article  CAS  Google Scholar 

  11. Snyder LR (1980) In: Horváth S (ed) High-performance liquid chromatography vol 1. Academic Press, New York, pp 207–316

    Chapter  Google Scholar 

  12. Poppe H, Paanakker J, Bronckhorst M (1981) J Chromatogr 204:77–84

    Article  CAS  Google Scholar 

  13. Hao W, Zhang X, Hou K (2006) Anal Chem 78:7828–7840

    Article  CAS  Google Scholar 

  14. Blumberg LM (2013) Chromatographia. doi:10.1007/s10337-013-2556-x

  15. Blumberg LM, Klee MS (2001) J Chromatogr A 918(1):113–120

    Article  CAS  Google Scholar 

  16. Blumberg LM (2010) Temperature-programmed gas chromatography. Wiley-VCH, Weinheim

    Book  Google Scholar 

  17. Consden R, Gordon AH, Martin AJP (1944) Biochem J 38:224–232

    CAS  Google Scholar 

  18. Giddings JC (1991) Unified separation science. Wiley, New York

    Google Scholar 

  19. Blumberg LM, Klee MS (2000) Anal Chem 72:4080–4089

    Article  CAS  Google Scholar 

  20. Blumberg LM (2012) In: Poole CF (ed) Gas chromatography. Elsevier, Amsterdam, pp 19–78

    Chapter  Google Scholar 

  21. Blumberg LM, Berger TA (1992) J Chromatogr 596:1–13

    Article  CAS  Google Scholar 

  22. Blumberg LM (1993) J Chromatogr 637:119–128

    Article  CAS  Google Scholar 

  23. Blumberg LM, Klee MS (1998) Anal Chem 70:3828–3839

    Article  CAS  Google Scholar 

  24. Glajch JL, Quarry MA, Vasta JF, Snyder LR (1986) Anal Chem 58:281–285

    Article  Google Scholar 

  25. Stuart JD, Lisi DD, Snyder LR (1989) J Chromatogr A 485:657–672

    Article  CAS  Google Scholar 

  26. Neue U-D, Marchand DH, Snyder LR (2006) J Chromatogr A 1111:32–39

    Article  CAS  Google Scholar 

  27. Zhang Y, Wang X, Mukherjee P, Petersson P (2009) J Chromatogr A 1216:4597–4605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid M. Blumberg.

Appendix: Verification of Eq. ( 28 )

Appendix: Verification of Eq. ( 28 )

It was pointed out in the text following Eq. (28) that Eqs. (27) and (28) can be verified by their direct substitution in Eq. (22). Equation (27) is the simplest of the two and its equivalents are known from literature [3]. On the other hand, Eq. (28) is more complex and was previously unknown. Its verification is provided below. Similar approach can be used for verification of Eq. (27) if necessary.

It follows from the definition of function W(x) [see text following Eq. (28)] that its derivative W′(x) can be found from expression

$$ {\text{W}}^{\prime} \left(x \right) + \frac{{{\text{W}}^{\prime} \left(x \right)}}{{{\text{W}}\left(x \right)}} = \frac{1}{x}. $$
(63)

This yields

$$ {\text{W}}^{\prime} \left(x \right) = \frac{{{\text{W}}\left(x \right)}}{{\left({1 + {\text{W}}\left(x \right)} \right)x}}. $$
(64)

As a result, differentiation of Eq. (28) by τ yields

$$ \frac{{{\text{d}}\zeta}}{{{\text{d}}\tau}} = \left({\frac{{{\text{W}}\left({\frac{1}{{k_{\text{init}}}}\exp \left({\frac{1}{{k_{\text{init}}}} + r_{\phi} \tau} \right)} \right)}}{{1 + {\text{W}}\left({\frac{1}{{k_{\text{init}}}}\exp \left({\frac{1}{{k_{\text{init}}}} + r_{\phi} \tau} \right)} \right)}}} \right). $$
(65)

Inversion (dτ/dζ) of this derivative [i.e., the derivative of τ by ζ in the left-hand side of Eq. (22)] is

$$ \frac{{{\text{d}}\tau}}{{{\text{d}}\zeta}} = 1 + \frac{1}{{{\text{W}}\left({\frac{1}{{k_{\text{init}}}}\exp \left({\frac{1}{{k_{\text{init}}}} + r_{\phi} \tau} \right)} \right)}}. $$
(66)

On the other hand, substitution of Eq. (28) in the right-hand side of Eq. (22) yields

$$ 1 + k_{\text{init}} {\text{e}}^{{r_{\phi} (\zeta - \tau \,)}} = 1 + k_{\text{init}} \exp \left({{\text{W}}\left({\frac{1}{{k_{\text{init}}}}\exp \left({\frac{1}{{k_{\text{init}}}} + r_{\phi} \tau} \right)} \right) - \frac{1}{{k_{\text{init}}}} - r_{\phi} \tau} \right)^{\,}, $$
(67)
$$ 1 + k_{\text{init}} {\text{e}}^{{r_{\phi} ({\zeta - \tau})}} = 1 + \frac{{k_{\text{init}}}}{{{ \exp }\left({r_{\phi} \tau + \frac{1}{{k_{\text{init}}}}} \right)}}\exp \left({{\text{W}}\left({\frac{1}{{k_{\text{init}}}}\exp \left({\frac{1}{{k_{\text{init}}}} + r_{\phi} \tau} \right)} \right)} \right) $$
(68)

As eW(x) = x/W(x) [see text following Eq. (28)], the last expression can be rearranged as

$$ 1 + k_{\text{init}} {\text{e}}^{{r_{\phi} ({\zeta - \tau})}} = 1 + \frac{1}{{{W}\left({\frac{1}{{k_{\text{init}}}}\exp \left({\frac{1}{{k_{\text{init}}}} + r_{\phi} \tau} \right)} \right)}}. $$
(69)

Comparison of Eqs. (66) and (69) confirms that the solution in Eq. (28) satisfies Eq. (22).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumberg, L.M. Theory of Gradient Elution Liquid Chromatography with Linear Solvent Strength: Part 1. Migration and Elution Parameters of a Solute Band. Chromatographia 77, 179–188 (2014). https://doi.org/10.1007/s10337-013-2555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2555-y

Keywords

Navigation