Skip to main content
Log in

Molecular cloning and 3D structure prediction of myoglobin and cytoglobin in Eurasian Tree Sparrow Passer montanus

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

In vertebrates, myoglobin (Mb) and cytoglobin (Cygb) are closest relatives in the family of globins, which are heme-containing proteins that can bind gaseous molecules. Mb acts not only as an O2 transporter but also a nitric oxide (NO) scavenger in cardiac and striated muscle. Cygb has been suggested to play important functions in lipid-based signaling processes, defense against reactive oxygen species (ROS), and nitric oxide (NO) metabolism, and it is present in a variety of cell types. However, little information about the structures and functions of Mb and Cygb is known in birds. Here, we cloned the full-length open reading frames (ORFs) of the two globins in Eurasian Tree Sparrow (Passer montanus). The Mb ORF cDNA contains 465 base pairs (bp) encoding 154 amino acids (aa), and the Cygb ORF cDNA contains 540 bp encoding 179 aa. Our results show that the amino acid sequences and three-dimensional (3D) structures of Mb and Cygb are highly conserved in vertebrate species. Interestingly, two specific substitutions were detected in Cygb compared with other vertebrates, which resulted in slight variation of the 3D conformation (e.g., distance between Tyr H16 and Lys G8, the strength of hydrogen bonds, and angles between the G–H helices). Our results may contribute to further understanding the structures, properties, and functions of Mb and Cygb as well as the potential mechanisms of oxygen utilization pathways in vertebrates.

Zusammenfassung

Molekulare klonierung und 3D-strukturvorhersage von myoglobin und cytoglobin beim feldsperling

Bei vertebraten sind myoglobin (Mb) und cytoglobin (Cygb) nahe Verwandte in der Familie der Globine, einer Stoffgruppe, die aus Häm-haltigen Proteinen besteht, die gasförmige Moleküle binden können. Mb dient nicht nur als Sauerstofftransporter, sondern auch als Stickoxid-Reiniger im Herzmuskel und gestreiften Muskeln. Cygb ist ein neu entdecktes Globin, und es wird angenommen, dass es eine wichtige Rolle spielt in lipid-basierten Signal-Prozessen, in der Verteidigung gegen reaktive Sauerstoffspezies und im Stickoxid-Stoffwechsel, der sich in verschiedenen Zelltypen zeigt. Allerdings ist wenig über Struktur und Funktion von Mb und Cygb bei Vögeln bekannt. Wir klonierten die gesamten „open reading frames“(ORFs) der zwei Globine des Feldsperling (Passer montanus). Die Mb ORF cDNA enthält 465 Basenpaare (bp), die für 154 Aminosäuren (aa) kodieren, und die Cygb ORF cDNA enthält 540 bp, die für 179 aa kodieren. Unsere Ergebnisse zeigen, dass die Aminosäuresequenzen und 3D-Strukturen von Mb und Cygb in Wirbeltierarten hoch konserviert sind. Interessanterweise fanden wir zwei spezifische Substitutionen in Cygb im Vergleich mit anderen Vertebraten, die zu einer leichten Änderung in der 3D-Struktur führten (z.B. Abstand zwischen Tyr H16 und Lys G8, die Kraft der Wasserstoffbindungen und Winkel zwischen den G-H Helices). Unsere Ergebnisse könnten einen Beitrag leisten zur weiteren Darstellung der Strukturen, Eigenschaften und Funktionen von Mb und Cygb; und zum Verständnis von möglichen Mechanismen von Sauerstoff-Pathways bei Vertebraten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi P, Bocedi A, de Sanctis D, Pesce A, Bolognesi M, Marden MC, Dewilde S, Moens L, Hankeln T, Burmester T (2004) Neuroglobin and cytoglobin: two new entries in the hemoglobin superfamily. Biochem Mol Biol Educ 32:305–313

    Article  CAS  PubMed  Google Scholar 

  • Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, Hankeln T (2010) Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci USA 107:21570–21575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burmester T, Hankeln T (2014) Function and evolution of vertebrate globins. Acta Physiol 211:501–514

    Article  CAS  Google Scholar 

  • Burmester T, Ebner B, Weich B, Hankeln T (2002) Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 19:416–421

    Article  CAS  PubMed  Google Scholar 

  • Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, Fuchs C, Hankeln T (2004) Neuroglobin and cytoglobin: genes, proteins and evolution. IUBMB Life 56:703–707

  • de Sanctis D, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2004) Mapping protein matrix cavities in human cytoglobin through Xe atom binding. Biochem Biophys Res Commun 316:1217–1221

    Article  PubMed  Google Scholar 

  • Flogel U, Merx MW, Godecke A, Decking UK, Schrader J (2001) Myoglobin: a scavenger of bioactive NO. Proc Natl Acad Sci USA 98:735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fordel E, Geuens E, Dewilde S, Rottiers P, Carmeliet P, Grooten J, Moens L (2004) Cytoglobin expression is upregulated in all tissues upon hypoxia: an in vitro and in vivo study by quantitative real-time PCR. Biochem Biophys Res Commun 319:342–348

    Article  CAS  PubMed  Google Scholar 

  • Fordel E, Thijs L, Moens L, Dewilde S (2007) Neuroglobin and cytoglobin expression in mice. Evidence for a correlation with reactive oxygen species scavenging. FEBS J 274:1312–1317

    Article  CAS  PubMed  Google Scholar 

  • Fu T, Song Y, Gao W (1998) Fauna Sinica Aves vol.14 Passeriformes, Ploceidae and Fringillidae. Science, Beijing

    Google Scholar 

  • Gardner AM, Cook MR, Gardner PR (2010) Nitric-oxide dioxygenase function of human cytoglobin with cellular reductants and in rat hepatocytes. J Biol Chem 285:23850–23857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golding GB, Dean AM (1998) The structural basis of molecular adaptation. Mol Biol Evol 15:355–369

    Article  CAS  PubMed  Google Scholar 

  • Hamdane D, Kiger L, Dewilde S, Green BN, Pesce A, Uzan J, Burmester T, Hankeln T, Bolognesi M, Moens L, Marden MC (2003) The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J Biol Chem 278:51713–51721

    Article  CAS  PubMed  Google Scholar 

  • Hankeln T, Wystub S, Laufs T, Schmidt M, Gerlach F, Saaler-Reinhardt S, Reuss S, Burmester T (2004) The cellular and subcellular localization of neuroglobin and cytoglobin—a clue to their function? IUBMB Life 56:671–679

    Article  CAS  PubMed  Google Scholar 

  • Hodges NJ, Innocent N, Dhanda S, Graham M (2008) Cellular protection from oxidative DNA damage by over-expression of the novel globin cytoglobin in vitro. Mutagenesis 23:293–298

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann FG, Opazo JC, Storz JF (2012) Whole-genome duplications spurred the functional diversification of the globin gene superfamily in vertebrates. Mol Biol Evol 29:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard SR, Hendrickson WA, Lambright DG, Boxer SG (1990) X-ray crystal structure of a recombinant human myoglobin mutant at 2.8 Å resolution. J Mol Biol 213:215–218

    Article  CAS  PubMed  Google Scholar 

  • Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, Nyengaard JR, Kelsen J, Hay-Schmidt A (2010) Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res 1331:58–73

    Article  CAS  PubMed  Google Scholar 

  • Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662–666

    Article  CAS  PubMed  Google Scholar 

  • Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC (1960) Structure of myoglobin: a three-dimensional Fourier synthesis at 2 Å resolution. Nature 185:422–427

    Article  CAS  PubMed  Google Scholar 

  • Kugelstadt D, Haberkamp M, Hankeln T, Burmester T (2004) Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken. Biochem Biophys Res Commun 325:719–725

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Li D, Chen XQ, Li WJ, Yang YH, Wang JZ, Yu AC (2007) Cytoglobin up-regulated by hydrogen peroxide plays a protective role in oxidative stress. Neurochem Res 32:1375–1380

    Article  CAS  PubMed  Google Scholar 

  • Li DM, Wu JZ, Zhang XR, Ma XF, Wingfield JC, Lei FM, Wang G, Wu YF (2011) Comparison of adrenocortical responses to acute stress in lowland and highland Eurasian Tree Sparrows (Passer montanus): similar patterns during the breeding, but different during the prebasic molt. J Exp Zool 315A:512–519

    Article  Google Scholar 

  • Li DM, Zhang J, Liu D, Zhang L, Hu YH, Duan XL, Wu YF (2013) Coping with extreme: highland Eurasian Tree Sparrows with molt-breeding overlap express higher levels of corticosterone-binding globulin than lowland sparrows. J Exp Zool 319A:482–486

    Article  Google Scholar 

  • Liang Y, Hua Z, Liang X, Xu Q, Lu G (2001) The crystal structure of bar-headed goose hemoglobin in deoxy form: the allosteric mechanism of a hemoglobin species with high oxygen affinity. J Mol Biol 313:123–137

    Article  CAS  PubMed  Google Scholar 

  • Liu XZ, Li SL, Jing H, Liang YH, Hua ZQ, Lu GY (2001) Avian haemoglobins and structural basis of high affinity for oxygen: structure of bar-headed goose aquomet haemoglobin. Acta Crystallogr D Biol Crystallogr 57:775–783

    Article  CAS  PubMed  Google Scholar 

  • Makino M, Sugimoto H, Sawai H, Kawada N, Yoshizato K, Shiro Y (2006) High-resolution structure of human cytoglobin: identification of extra N- and C-termini and a new dimerization mode. Acta Crystallogr D Biol Crystallogr 62:671–677

    Article  PubMed  Google Scholar 

  • McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31:200–204

    Article  CAS  PubMed  Google Scholar 

  • Mokrousov I, Narvskaya O, Otten T, Limeschenko E, Steklova L, Vyshnevskiy B (2002) High prevalence of KatG Ser315Thr substitution among isoniazid-resistant mycobacterium tuberculosis clinical isolates from Northwestern Russia, 1996 to 2001. Antimicrob Agents Chemother 46:1417–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatani K, Okuyama H, Shimahara Y, Saeki S, Kim D-H, Nakajima Y, Seki S, Kawada N, Yoshizato K (2003) Cytoglobin/STAP, its unique localization in splanchnic fibroblast-like cells and function in organ fibrogenesis. Lab Invest 84:91–101

    Article  Google Scholar 

  • Oleksiewicz U, Liloglou T, Field JK, Xinarianos G (2011) Cytoglobin: biochemical, functional and clinical perspective of the newest member of the globin family. Cell Mol Life Sci 68:3869–3883

    Article  CAS  PubMed  Google Scholar 

  • Ordway GA, Garry DJ (2004) Myoglobin: an essential hemoprotein in striated muscle. J Exp Biol 207:3441–3446

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF (1983) Species adaptation in a protein molecule. Mol Biol Evol 1:1–28

    CAS  PubMed  Google Scholar 

  • Pesce A, Bolognesi M, Bocedi A, Ascenzi P, Dewilde S, Moens L, Hankeln T, Burmester T (2002) Neuroglobin and cytoglobin. Fresh blood for the vertebrate globin family. EMBO Rep 3:1146–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeder BJ, Svistunenko DA, Wilson MT (2011) Lipid binding to cytoglobin leads to a change in haem co-ordination: a role for cytoglobin in lipid signalling of oxidative stress. Biochem J 434:483–492

    Article  CAS  PubMed  Google Scholar 

  • Sanctis Dd, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2004) Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination. J Mol Biol 336:917–927

    Article  PubMed  Google Scholar 

  • Schmidt M, Gerlach F, Avivi A, Laufs T, Wystub S, Simpson JC, Nevo E, Saaler-Reinhardt S, Reuss S, Hankeln T, Burmester T (2004) Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J Biol Chem 279:8063–8069

    Article  CAS  PubMed  Google Scholar 

  • Schneeganss D, Braunitzer G, Oberthür W, Kösters J, Grimm F (1985) Hemoglobin of tree sparrows (Passer montanus, Passeriformes): sequence of the major (Hb A) and minor (Hb D) components. Biol Chem Hoppe-Seyler 366:893–899

    Article  CAS  PubMed  Google Scholar 

  • Storz JF, Opazo JC, Hoffmann FG (2013) Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol Phylogenet Evol 66:469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto H, Makino M, Sawai H, Kawada N, Yoshizato K, Shiro Y (2004) Structural basis of human cytoglobin for ligand binding. J Mol Biol 339:873–885

    Article  CAS  PubMed  Google Scholar 

  • Takano T (1977) Structure of myoglobin refined at 2-0 A resolution. I. Crystallographic refinement of metmyoglobin from sperm whale. J Mol Biol 110:537–568

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trent JT 3rd, Hargrove MS (2002) A ubiquitously expressed human hexacoordinate hemoglobin. J Biol Chem 277:19538

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg BA (2009) Both hypoxia and work are required to enhance expression of myoglobin in skeletal muscle. Focus on “Hypoxia reprograms calcium signaling and regulates myoglobin expression”. Am J Physiol Cell Physiol 296:C390–C392

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg BA, Wittenberg JB (1989) Transport of oxygen in muscle. Annu Rev Physiol 51:857–878

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg JB, Wittenberg BA (2003) Myoglobin function reassessed. J Exp Biol 206:2011–2020

    Article  CAS  PubMed  Google Scholar 

  • Xi Y, Obara M, Ishida Y, Ikeda S, Yoshizato K (2007) Gene expression and tissue distribution of cytoglobin and myoglobin in the amphibia and reptilia: possible compensation of myoglobin with cytoglobin in skeletal muscle cells of anurans that lack the myoglobin gene. Gene 398:94–102

    Article  CAS  PubMed  Google Scholar 

  • Yang JM (2004) Development and evaluation of a generic evolutionary method for protein–ligand docking. J Comput Chem 25:843–857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers whose comments and suggestions helped improve and clarify the manuscript. This study was supported by the National Natural Science Foundation of China (NSFC, 31330073, 31000191), the foundation of China Scholarship Council (CSC, 201408130068), and the Natural Science Foundation of the Department of Education, Hebei Province (YQ2014024) to D.M.L., the Natural Science Foundation of Hebei Province (NSFHB, C2013205018) to Y.F.W.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongming Li or Yuefeng Wu.

Additional information

Communicated by K. C. Klasing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Sun, Y., Li, M. et al. Molecular cloning and 3D structure prediction of myoglobin and cytoglobin in Eurasian Tree Sparrow Passer montanus . J Ornithol 157, 493–504 (2016). https://doi.org/10.1007/s10336-015-1290-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1290-6

Keywords

Navigation