Skip to main content
Log in

Abstract

To review and analyze the currently available MRI motion phantoms. Publications were collected from the Toronto Metropolitan University Library, PubMed, and IEEE Xplore. Phantoms were categorized based on the motions they generated: linear/cartesian, cardiac-dilative, lung-dilative, rotational, deformation or rolling. Metrics were extracted from each publication to assess the motion mechanisms, construction methods, as well as phantom validation. A total of 60 publications were reviewed, identifying 48 unique motion phantoms. Translational movement was the most common movement (used in 38% of phantoms), followed by cardiac-dilative (27%) movement and rotational movement (23%). The average degrees of freedom for all phantoms were determined to be 1.42. Motion phantom publications lack quantification of their impact on signal-to-noise ratio through standardized testing. At present, there is a lack of phantoms that are designed for multi-role as many currently have few degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(Figure adapted from ‘Commissioning of a 4D MRI phantom for use in MR-guided radiotherapy,’ by Schneider et al. [18], with permission from John Wiley & Sons, Inc)

Fig. 4

(Figure adapted from Saotome et al., ‘A brain phantom for motion-corrected PROPELLER showing image contrast and construction similar to those of in vivo MRI,’ in Magnetic Resonance Imaging, vol. 36, February 2017, with permission from Elsevier [7])

Fig. 5

(Adapted from ‘Comparison of MRI, 64-slice MDCT and DSCT in assessing functional cardiac parameters of a moving heart phantom,’ by Groen et al. under CC BY-NC. License details at https://creativecommons.org/licenses/by-nc/4.0/deed.en [51])

Fig. 6

(Figure adapted from ‘Dynamic phantom with heart, lung, and blood motion for initial validation of MRI techniques,’ by Swailes et al. [9], with permission from John Wiley & Sons, Inc)

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Liang Z-P, Lauterbur P (2000) Principles of. Magn Reson Imaging. https://doi.org/10.1109/9780470545652.ch8

    Article  Google Scholar 

  2. Zaitsev M, Maclaren J, Herbst M (2015) Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging 42:887–901

    Article  PubMed  PubMed Central  Google Scholar 

  3. Earls JP, Ho VB, Foo TK, Castillo E, Flamm SD (2002) Cardiac MRI: recent progress and continued challenges. J Magn Reson Imaging 16:111–127

    Article  PubMed  Google Scholar 

  4. Luetkens JA, Kupczyk PA, Doerner J, Fimmers R, Willinek WA, Schild HH, Kukuk GM (2015) Respiratory motion artefacts in dynamic liver MRI: a comparison using gadoxetate disodium and gadobutrol. Eur Radiol 25:3207–3213

    Article  PubMed  Google Scholar 

  5. Bulas D, Egloff A (2013) Benefits and risks of MRI in pregnancy. Semin Perinatol 37:301–304

    Article  PubMed  Google Scholar 

  6. Rehwald WG, Reeder SB, McVeigh ER, Judd RM (1997) Techniques for high-speed cardiac magnetic resonance imaging in rats and rabbits. Magn Reson Med 37:124–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saotome K, Matsushita A, Matsumoto K, Kato Y, Nakai K, Murata K, Yamamoto T, Sankai Y, Matsumura A (2017) A brain phantom for motion-corrected PROPELLER showing image contrast and construction similar to those of in vivo MRI. Magn Reson Imaging 36:32–39

    Article  PubMed  Google Scholar 

  8. Weidner A, Stengl C, Dinkel F, Dorsch S, Murillo C, Seeber S, Gnirs R, Runz A, Echner G, Karger CP, Jäkel O (2022) An abdominal phantom with anthropomorphic organ motion and multimodal imaging contrast for MR-guided radiotherapy. Phys Med Biol. https://doi.org/10.1088/1361-6560/ac4ef8

    Article  PubMed  Google Scholar 

  9. Swailes NE, MacDonald ME, Frayne R (2011) Dynamic phantom with heart, lung, and blood motion for initial validation of MRI techniques. J Magn Reson Imaging 34:941–946

    Article  PubMed  Google Scholar 

  10. Fieseler M, Kugel H, Gigengack F, Kos̈ters T, Buẗher F, Quick HH, Faber C, Jiang X, Schäfers KP (2013) A dynamic thorax phantom for the assessment of cardiac and respiratory motion correction in PET/MRI: a preliminary evaluation. Nucl Instr Methods Phys Res Sect A Accelerators Spectrometers Detectors Assoc Equip 702:59–63

    Article  CAS  Google Scholar 

  11. Vali A, Schmitter S, Ma L, Flassbeck S, Schmidt S, Markl M, Schnell S (2020) Development of a rotation phantom for phase contrast MRI sequence validation and quality control. Magn Reson Med 84:3333–3341

    Article  PubMed  Google Scholar 

  12. Saenz DL, Yan Y, Christensen N, Henzler MA, Forrest LJ, Bayouth JE, Paliwal BR (2015) Characterization of a 0.35T MR system for phantom image quality stability and in vivo assessment of motion quantification. J Appl Clin Med Phys 16:30–40

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kim T, Lewis B, Lotey R, Barberi E, Green O (2021) Clinical experience of MRI4D QUASAR motion phantom for latency measurements in 0.35T MR-LINAC. J Appl Clin Med Phys 22:128–136

    Article  PubMed  Google Scholar 

  14. Rai R, Wang YF, Manton D, Dong B, Deshpande S, Liney GP (2019) Development of multi-purpose 3D printed phantoms for MRI. Phys Med Biol. https://doi.org/10.1088/1361-6560/ab0b49

    Article  PubMed  Google Scholar 

  15. Parent L, Nemtanu T, Celicanin Z, Bieri O, Cattin P, Ken S (2018) EP-2190: quantitative evaluation of a new 4D MRI sequence: a motion phantom study. Radiother Oncol 127:S1210–S1211. https://doi.org/10.1016/S0167-8140(18)32499-X

    Article  Google Scholar 

  16. Borman P, Woodhead P, Perrin M, Barberi E, Lagendijk J, Raaymakers B, Fast M (2020) OC-0706: first MRI-guided MLC-tracking using a deformable motion phantom. Radiother Oncol 152:S397–S398. https://doi.org/10.1016/S0167-8140(21)00728-3

    Article  Google Scholar 

  17. Lamb JM, Ginn JS, O’Connell DP, Agazaryan N, Cao M, Thomas DH, Yang Y, Lazea M, Lee P, Low DA (2017) Dosimetric validation of a magnetic resonance image gated radiotherapy system using a motion phantom and radiochromic film. J Appl Clin Med Phys 18:163–169

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schneider S, Dolde K, Engler J, Hoffmann A, Pfaffenberger A (2019) Commissioning of a 4D MRI phantom for use in MR-guided radiotherapy. Med Phys 46:25–33

    Article  PubMed  Google Scholar 

  19. Dolde K, Schneider S, Pfaffenberger A, Hoffmann A (2018) 3D motion validation with clinically used cine-MRI and an MR-LINAC phantom. Radiother Oncol. https://doi.org/10.1016/S0167-8140(18)31251-9

    Article  Google Scholar 

  20. Liu X, Li C, Zhu J, Gong G, Sun H, Li X, Sun M, Zhang Z, Li B, Yin Y, Li Z (2021) Technical Note: End-to-end verification of an MR-Linac using a dynamic motion phantom. Med Phys 48:5479–5489

    Article  PubMed  Google Scholar 

  21. Kavaluus H, Koivula L, Salli E, Seppälä T, Saarilahti K, Tenhunen M (2022) Motion modeling from 4D MR images of liver simulating phantom. J Appl Clin Méd Phys 23:e13611

    Article  PubMed  PubMed Central  Google Scholar 

  22. Constantinides C, Zhong X, Tzagkarakis V, Cofer G, Gravett R (2013) Emulation of human and rodent cardiac motion with a computer-controlled cardiac phantom using DENSE MRI. Concepts Magn Resonance Part A Bridging Educ Res 42:59–71

    Article  Google Scholar 

  23. Tavakoli V, Kendrick M, Shakeri M, Alshaher M, Stoddard M, Amini A (2013) A multimodal (MRI/Ultrasound) cardiac phantom for imaging experiments. In: Progress in biomedical optics and imaging - proceedings of SPIE. 8672:02. https://doi.org/10.1117/12.2008783.

  24. Rabe M, Paganelli C, Riboldi M, Bondesson D, Schneider MJ, Chmielewski T, Baroni G, Dinkel J, Reiner M, Landry G, Parodi K, Belka C, Kamp F, Kurz C (2021) Porcine lung phantom-based validation of estimated 4D-MRI using orthogonal cine imaging for low-field MR-Linacs. Phys Med Biol 66:055006

    Article  CAS  PubMed  Google Scholar 

  25. Khan S, Wilde JD (2003) Design of a dynamic cardiac MR phantom for the evaluation of cardiac MR systems. Int Congr Ser 1256:1165–1170

    Article  Google Scholar 

  26. Sternberg NC von, Hedayati YS, Zaid HM, Yeniaras E, Christoforou E, Tsekos NV (2012) An actuated phantom for developing and studying mri-guided interventions in dynamic environments. In: The fourth IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics. pp 1669–1674

  27. Huber M, Stuber M, Botnar R, Boesiger P, Manning W (2000) Low-cost MR-compatible moving heart phantom. J Cardiovasc Magn Reson 2:181–187

    Article  CAS  PubMed  Google Scholar 

  28. Sagias G, Yiallouras C, Ioannides K, Damianou C (2016) An MRI-conditional motion phantom for the evaluation of high-intensity focused ultrasound protocols. Int J Méd Robot Comput Assist Surg 12:431–441

    Article  Google Scholar 

  29. Merxem AG de, Macq BM, Lechien V, Thibault T, Dasnoy D (2017) Design and implementation of a MRI compatible and dynamic phantom simulating the motion of a tumor in the liver under the breathing cycle. In: 13th international symposium on medical information processing and analysis. https://doi.org/10.1117/12.2285620

  30. Chang Z, Cai J, Wang Z, Yin F-F (2011) Evaluation of motion measurement using cine MRI for image guided stereotactic body radiotherapy on a new phantom platform. J Radiosurg SBRT 1:109–115

    PubMed  PubMed Central  Google Scholar 

  31. Hatt CR, Stanton D, Parthasarathy V, Jain AK, Raval AN (2011) A method for measuring the accuracy of multi-modal image fusion system for catheter-based cardiac interventions using a novel motion enabled targeting phantom. In: 33rd annual international conference of the IEEE EMBS. pp 6260–6264

  32. Bing C, Cheng B, Staruch RM, Nofiele J, Staruch MW, Szczepanski D, Farrow-Gillespie A, Yang A, Laetsch TW, Chopra R (2019) Breath-hold MR-HIFU hyperthermia: phantom and in vivo feasibility. Int J Hyperth 36:1083–1096

    Article  CAS  Google Scholar 

  33. Yue Y, Fan Z, Yang W, Pang J, Deng Z, McKenzie E, Tuli R, Wallace R, Li D, Fraass B (2015) Geometric validation of self-gating k-space-sorted 4D-MRI vs 4D-CT using a respiratory motion phantom. Med Phys 42:5787–5797

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee CK, Seo N, Kim B, Huh J, Kim JK, Lee SS, Kim IS, Nickel D, Kim KW (2017) The effects of breathing motion on dce-mri images: phantom studies simulating respiratory motion to compare CAIPIRINHA-VIBE, radial-VIBE, and conventional VIBE. Korean J Radiol 18:289–298

    Article  PubMed  PubMed Central  Google Scholar 

  35. Einspänner E, Jochimsen TH, Harries J, Melzer A, Unger M, Brown R, Thielemans K, Sabri O, Sattler B (2022) Evaluating different methods of MR-based motion correction in simultaneous PET/MR using a head phantom moved by a robotic system. EJNMMI Phys. https://doi.org/10.1186/s40658-022-00442-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Melzer A, Gutmann B, Remmele T, Wolf R, Lukoscheck A, Bock M, Bardenheuer H, Fischer H (2008) INNOMOTION for percutaneous image-guided interventions. IEEE Eng Med Biol Mag 27:66–73

    Article  PubMed  Google Scholar 

  37. Yun J, Wachowicz K, Mackenzie M, Rathee S, Robinson D, Fallone BG (2013) First demonstration of intrafractional tumor-tracked irradiation using 2D phantom MR images on a prototype linac-MR. Méd Phys 40:051718

    PubMed  Google Scholar 

  38. Günther M, Feinberg DA (2004) Ultrasound-guided MRI: preliminary results using a motion phantom. Magn Reson Med 52:27–32

    Article  PubMed  Google Scholar 

  39. Yerly J, Gubian D, Knebel J, Schenk A, Chaptinel J, Ginami G, Stuber M (2018) A phantom study to determine the theoretical accuracy and precision of radial MRI to measure cross-sectional area differences for the application of coronary endothelial function assessment. Magn Reson Med 79:108–120

    Article  PubMed  Google Scholar 

  40. Drangova M, Bowman B, Pelc NJ (1996) Physiologic motion phantom for MRI applications. J Magn Reson Imaging 6:513–518

    Article  CAS  PubMed  Google Scholar 

  41. Nordell B, Ståhlberg F, Ericsson A, Ranta C (1988) A rotating phantom for the study of flow effects in MR imaging. Magn Reson Imaging 6:695–705

    Article  CAS  PubMed  Google Scholar 

  42. Gomez A, Schmitz C, Henningsson M, Housden J, Noh Y, Zimmer VA, Clough JR, Oksuz I, Toussaint N, King AP, Schnabel JA (2019) Mechanically powered motion imaging phantoms: proof of concept. https://doi.org/10.1109/embc.2019.8856577

  43. Durand EP, Jolivet O, Itti E, Tasu J, Bittoun J (2001) Precision of magnetic resonance velocity and acceleration measurements: theoretical issues and phantom experiments. J Magn Reson Imaging 13:445–451

    Article  CAS  PubMed  Google Scholar 

  44. Tavakoli V, Negahdar MJ, Kendrick M, Alshaher M, Stoddard M, Amini AA (2012) A biventricular multimodal (MRI/ultrasound) cardiac phantom. pp 3187–3190

  45. Cygan S, Werys K, Błaszczyk Ł, Kubik T, Kałuzyński K (2014) Left ventricle phantom and experimental setup for MRI and echocardiography—preliminary results of data acquisitions. Biocybern Biomed Eng 34:19–24

    Article  Google Scholar 

  46. Corrado PA, Medero R, Johnson KM, François CJ, Roldán-Alzate A, Wieben O (2021) A phantom study comparing radial trajectories for accelerated cardiac 4D flow MRI against a particle imaging velocimetry reference. Magn Reson Med 86:363–371

    Article  PubMed  PubMed Central  Google Scholar 

  47. Okafor I, Garcia C, Barker AJ, Oshinski J, Yoganathan AP (2015) A physiologic flow phantom for the evaluation of 4D flow MRI in the left ventricle. J Cardiovasc Magn Reson 17:Q106

    Article  Google Scholar 

  48. Evans AJ, Hedlund LW, Herfkens RJ (1988) A cardiac phantom and pulsatile flow pump for magnetic resonance imaging studies. Investig Radiol 23:579–583

    Article  CAS  Google Scholar 

  49. Debatin JF, Nadel SN, Paolini JF, Sostman HD, Coleman RE, Evans AJ, Beam C, Spritzer CE, Bashore TM (1992) Cardiac ejection fraction: Phantom study comparing cine MR imaging, radionuclide blood pool imaging, and ventriculography. J Magn Reson Imaging 2:135–142

    Article  CAS  PubMed  Google Scholar 

  50. Huang C, Petibon Y, Ouyang J, Reese TG, Ahlman MA, Bluemke DA, Fakhri GE (2015) Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: phantom and patient studies. Med Phys 42:1087–1097

    Article  PubMed  PubMed Central  Google Scholar 

  51. Groen JM, van der Vleuten PA, Greuter MJW, Zijlstra F, Oudkerk M (2009) Comparison of MRI, 64-slice MDCT and DSCT in assessing functional cardiac parameters of a moving heart phantom. Eur Radiol 19:577–583

    Article  CAS  PubMed  Google Scholar 

  52. Irwan R, Rüssel IK, Sijens PE (2006) Fast 3D coronary artery contrast-enhanced magnetic resonance angiography with magnetization transfer contrast, fat suppression and parallel imaging as applied on an anthropomorphic moving heart phantom. Magn Reson Imaging 24:895–902

    Article  PubMed  Google Scholar 

  53. Neumann W, Lietzmann F, Schad LR, Zöllner FG (2017) Design of a multimodal (1H/23Na MR/CT) anthropomorphic thorax phantom. Z für Med Phys 27:124–131

    Article  Google Scholar 

  54. Tillieux P, Topfer R, Foias A, Leroux I, Maâchi IE, Leblond H, Stikov N, Cohen-Adad J (2018) A pneumatic phantom for mimicking respiration-induced artifacts in spinal MRI. Magn Reson Med 79:600–605

    Article  PubMed  Google Scholar 

  55. Remmert G, Biederer J, Lohberger F, Fabel M, Hartmann GH (2007) Four-dimensional magnetic resonance imaging for the determination of tumour movement and its evaluation using a dynamic porcine lung phantom. Phys Med Biol. https://doi.org/10.1088/0031-9155/52/18/n02

    Article  PubMed  Google Scholar 

  56. Wheatley M, Deene YD (2022) A novel anthropomorphic breathing phantom with a pneumatic MR-safe actuator for tissue deformation studies during MRI and radiotherapy. Physica Med 104:43–55

    Article  Google Scholar 

  57. Colvill E, Krieger M, Bosshard P, Steinacher P, Schnidrig BAR, Parkel T, Stergiou I, Zhang Y, Peroni M, Safai S, Weber DC, Lomax A, Fattori G (2020) Anthropomorphic phantom for deformable lung and liver CT and MR imaging for radiotherapy. Phys Med Biol 65:07NT02

    Article  CAS  PubMed  Google Scholar 

  58. Soultanidis GM, Mackewn JE, Tsoumpas C, Marsden PK (2013) PVA cryogel for construction of deformable PET-MR visible phantoms. IEEE Trans Nucl Sci 60:95–102

    Article  Google Scholar 

  59. Sciarretta J, Samani A, Bishop J, Plewes DB (2002) MR validation of soft tissue mimicing phantom deformation as modeled by nonlinear finite element analysis. Méd Phys 29:65–72

    PubMed  Google Scholar 

  60. Constantinides CD, McVeigh E (1997) Use of MRI spin tagging for position tracking and deformation calculation in a stretching phantom, vol. 2. pp 813–816.

  61. Moore CC, Reeder SB, McVeigh ER (1994) Tagged MR imaging in a deforming phantom: photographic validation. Radiology 190:765–769

    Article  CAS  PubMed  Google Scholar 

  62. Huang C, Ackerman JL, Petibon Y, Normandin MD, Brady TJ, Fakhri GE, Ouyang J (2014) Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET–MR: Phantom and non-human primate studies. Neuroimage 91:129–137

    Article  PubMed  Google Scholar 

  63. Huang C, Ackerman JL, Petibon Y, Brady TJ, Fakhri GE, Ouyang J (2014) MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study. Méd Phys 41:041910

    PubMed  PubMed Central  Google Scholar 

  64. Udine M, Loke Y-H, Goudar S, Donofrio MT, Truong U, Krishnan A (2023) The current state and potential innovation of fetal cardiac MRI. Front Pediatr 11:1219091

    Article  PubMed  PubMed Central  Google Scholar 

  65. Remien K, Majmundar S (2023) Physiology, fetal circulation. StatPearls

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design, analysis and interpretation of data and critical revision: Dunn, Sussman. Acquisition of data: Dunn, Wagner. Drafting of manuscript: Dunn, Sussman. Conflict of interest 

Corresponding author

Correspondence to Dafna Sussman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunn, A., Wagner, S. & Sussman, D. Scoping review of magnetic resonance motion imaging phantoms. Magn Reson Mater Phy (2024). https://doi.org/10.1007/s10334-024-01164-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10334-024-01164-9

Keywords

Navigation