Skip to main content
Log in

Stop moving: MR motion correction as an opportunity for artificial intelligence

  • Review
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Subject motion is a long-standing problem of magnetic resonance imaging (MRI), which can seriously deteriorate the image quality. Various prospective and retrospective methods have been proposed for MRI motion correction, among which deep learning approaches have achieved state-of-the-art motion correction performance. This survey paper aims to provide a comprehensive review of deep learning-based MRI motion correction methods. Neural networks used for motion artifacts reduction and motion estimation in the image domain or frequency domain are detailed. Furthermore, besides motion-corrected MRI reconstruction, how estimated motion is applied in other downstream tasks is briefly introduced, aiming to strengthen the interaction between different research areas. Finally, we identify current limitations and point out future directions of deep learning-based MRI motion correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zaitsev M, Maclaren J, Herbst M (2015) Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging 42(4):887–901

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ehman RL, McNamara MT, Pallack M, Hricak H, Higgins CB (1984) Magnetic resonance imaging with respiratory gating: techniques and advantages. AJR Am J Roentgenol 143(6):1175–1182

    Article  CAS  PubMed  Google Scholar 

  3. Lanzer P, Barta C, Botvinick EH, Wiesendanger HU, Modin G, Higgins CB (1985) ECG-synchronized cardiac MR imaging: method and evaluation. Radiology 155(3):681–686

    Article  CAS  PubMed  Google Scholar 

  4. Glover GH, Pauly JM (1992) Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med 28(2):275–289

    Article  CAS  PubMed  Google Scholar 

  5. Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42(5):963–969

    Article  CAS  PubMed  Google Scholar 

  6. Maclaren J, Herbst M, Speck O, Zaitsev M (2013) Prospective motion correction in brain imaging: a review. Magn Reson Med 69(3):621–636

    Article  PubMed  Google Scholar 

  7. Olesen OV, Paulsen RR, Hojgaard L, Roed B, Larsen R (2012) Motion tracking for medical imaging: a nonvisible structured light tracking approach. IEEE Trans Med Imaging 31(1):79–87

    Article  PubMed  Google Scholar 

  8. Schulz J, Siegert T, Reimer E, Labadie C, Maclaren J, Herbst M, Zaitsev M, Turner R (2012) An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7T. Magn Reson Mater Phy 25(6):443–453

    Article  Google Scholar 

  9. Aranovitch A, Haeberlin M, Gross S, Dietrich BE, Reber J, Schmid T, Pruessmann KP (2020) Motion detection with NMR markers using real-time field tracking in the laboratory frame. Magn Reson Med 84(1):89–102

    Article  PubMed  Google Scholar 

  10. Barnwell JD, Smith JK, Castillo M (2007) Utility of navigator-prospective acquisition correction technique (PACE) for reducing motion in brain MR imaging studies. Am J Neuroradiol 28(4):790–791

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Moghari MH, Hu P, Kissinger KV, Goddu B, Goepfert L, Ngo L, Manning WJ, Nezafat R (2012) Subject-specific estimation of respiratory navigator tracking factor for free-breathing cardiovascular MR. Magn Reson Med 67(6):1665–1672

    Article  PubMed  Google Scholar 

  12. Skare S, Hartwig A, Martensson M, Avventi E, Engstrom M (2015) Properties of a 2D fat navigator for prospective image domain correction of nodding motion in brain MRI. Magn Reson Med 73(3):1110–1119

    Article  PubMed  Google Scholar 

  13. Uribe S, Muthurangu V, Boubertakh R, Schaeffter T, Razavi R, Hill DL, Hansen MS (2007) Whole-heart cine MRI using real-time respiratory self-gating. Magn Reson Med 57(3):606–613

    Article  PubMed  Google Scholar 

  14. Larson AC, White RD, Laub G, McVeigh ER, Li DB, Simonetti OP (2004) Self-gated cardiac cine MRI. Magn Reson Med 51(1):93–102

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stehning C, Bornert P, Nehrke K, Eggers H, Stuber M (2005) Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 54(2):476–480

    Article  CAS  PubMed  Google Scholar 

  16. Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO (2012) Respiratory self-navigation for whole-heart bright-blood coronary MRI: Methods for robust isolation and automatic segmentation of the blood pool. Magn Reson Med 68(2):571–579

    Article  PubMed  Google Scholar 

  17. Odille F, Vuissoz PA, Marie PY, Felblinger J (2008) Generalized reconstruction by inversion of coupled systems (GRICS) applied to free-breathing MRI. Magn Reson Med 60(1):146–157

    Article  PubMed  Google Scholar 

  18. Johnson PM, Drangova M (2019) Conditional generative adversarial network for 3D rigid-body motion correction in MRI. Magn Reson Med 82(3):901–910

    Article  PubMed  Google Scholar 

  19. Kustner T, Armanious K, Yang J, Yang B, Schick F, Gatidis S (2019) Retrospective correction of motion-affected MR images using deep learning frameworks. Magn Reson Med 82(4):1527–1540

    Article  PubMed  Google Scholar 

  20. Pawar K, Chen Z, Shah NJ, Egan GF (2019) Suppressing motion artefacts in MRI using an Inception-ResNet network with motion simulation augmentation. NMR Biomed. https://doi.org/10.1002/nbm.4225

    Article  PubMed  Google Scholar 

  21. Armanious K, Tanwar A, Abdulatif S, Kuestner T, Gatidis S, Yang B (2020) Unsupervised adversarial correction of rigid MR motion artifacts. In: Paper presented at the 2020 IEEE 17th international symposium on biomedical imaging (ISBI), Iowa City, IA, USA

  22. Kromrey ML, Tamada D, Johno H, Funayama S, Nagata N, Ichikawa S, Kühn JP, Onishi H, Motosugi U (2020) Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network. Eur Radiol 30(11):5923–5932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu J, Kocak M, Supanich M, Deng J (2020) Motion artifacts reduction in brain MRI by means of a deep residual network with densely connected multi-resolution blocks (DRN-DCMB). Magn Reson Imaging 71:69–79

    Article  PubMed  Google Scholar 

  24. Usman M, Latif S, Asim M, Lee BD, Qadir J (2020) Retrospective motion correction in multishot MRI using generative adversarial network. Sci Rep 10(1):4786

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu S, Thung K-H, Qu L, Lin W, Shen D, Yap P-T (2021) Learning MRI artefact removal with unpaired data. Nat Mach Intell 3(1):60–67

    Article  Google Scholar 

  26. Lyu Q, Shan H, Xie Y, Kwan AC, Otaki Y, Kuronuma K, Li D, Wang G (2021) Cine cardiac MRI motion artifact reduction using a recurrent neural network. IEEE Trans Med Imaging 40(8):2170–2181

    Article  PubMed  PubMed Central  Google Scholar 

  27. Morales MA, Assana S, Cai X, Chow K, Haji-Valizadeh H, Sai E, Tsao C, Matos J, Rodriguez J, Berg S, Whitehead N, Pierce P, Goddu B, Manning WJ, Nezafat R (2022) An inline deep learning based free-breathing ECG-free cine for exercise cardiovascular magnetic resonance. J Cardiovasc Magn Reson 24(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li H, Fan Y (2018) Non-rigid image registration using self-supervised fully convolutional networks without training data. In: Proceedings of IEEE international symposium on biomedical imaging. pp 1075–1078

  29. de Vos BD, Berendsen FF, Viergever MA, Sokooti H, Staring M, Išgum I (2019) A deep learning framework for unsupervised affine and deformable image registration. Med Image Anal 52:128–143

    Article  PubMed  Google Scholar 

  30. Fechter T, Baltas D (2020) One-shot learning for deformable medical image registration and periodic motion tracking. IEEE Trans Med Imaging 39(7):2506–2517

    Article  PubMed  Google Scholar 

  31. Yu H, Chen X, Shi H, Chen T, Huang TS, Sun S (2020) Motion pyramid networks for accurate and efficient cardiac motion estimation. Medical image computing and computer assisted intervention—MICCAI 2020. Lecture notes in computer science. Springer, Cham, pp 436–446. https://doi.org/10.1007/978-3-030-59725-2_42

    Chapter  Google Scholar 

  32. Sang Y, Cao M, McNitt-Gray M, Gao Y, Hu P, Yan R, Yang Y, Ruan D (2021) Enhancing 4D cardiac MRI registration network with a motion prior learned from coronary CTA. In: Paper presented at the 2021 IEEE 18th international symposium on biomedical imaging (ISBI)

  33. Upendra RR, Kamrul Hasan SM, Simon R, Wentz BJ, Shontz SM, Sacks MS, Linte CA (2021) Motion extraction of the right ventricle from 4D cardiac cine MRI using a deep learning-based deformable registration framework. In: Paper presented at the 2021 43rd annual international conference of the IEEE engineering in medicine & biology society (EMBC)

  34. Meng Q, Bai W, Liu T, O’Regan DP, Rueckert D (2022) Mesh-based 3D motion tracking in cardiac MRI using deep learning. Medical image computing and computer assisted intervention—MICCAI 2022. Lecture notes in computer science. Springer, Cham, pp 248–258. https://doi.org/10.1007/978-3-031-16446-0_24

    Chapter  Google Scholar 

  35. Zhang M, Fletcher PT (2019) Fast diffeomorphic image registration via fourier-approximated lie algebras. Int J Comput Vision 127(1):61–73

    Article  MathSciNet  Google Scholar 

  36. Wang J, Zhang M (2020) DeepFLASH: an efficient network for Learning-based medical image registration. In: Paper presented at the proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR)

  37. Kustner T, Pan J, Qi H, Cruz G, Gilliam C, Blu T, Yang B, Gatidis S, Botnar R, Prieto C (2021) LAPNet: non-rigid registration derived in k-space for magnetic resonance imaging. IEEE Trans Med Imaging 40(12):3686–3697

    Article  PubMed  Google Scholar 

  38. Singh NM, Dey N, Hoffmann M, Fischl B, Adalsteinsson E, Frost R, Dalca AV, Golland P (2023) Data consistent deep rigid MRI motion correction. arXiv:230110365 [eessIV]. https://doi.org/10.48550/arXiv.2301.10365

  39. Lee S, Jung S, Jung K-J, Kim D-H (2020) Deep learning in MR motion correction: a brief review and a new motion simulation tool (view2Dmotion). Investig Magn Reson Imaging 24(4):196

    Article  Google Scholar 

  40. Chang Y, Li Z, Saju G, Mao H, Liu T (2023) Deep learning-based rigid motion correction for magnetic resonance imaging: a survey. Meta Radiol 1(1):100001

    Article  Google Scholar 

  41. Spieker V, Eichhorn H, Hammernik K, Rueckert D, Preibisch C, Karampinos DC, Schnabel JA (2023) Deep learning for retrospective motion correction in MRI: a comprehensive review. arXiv:230506739 [eessIV]. https://doi.org/10.48550/arXiv.2305.06739

  42. Pan J, Rueckert D, Küstner T, Hammernik K (2022) Learning-based and unrolled motion-compensated reconstruction for cardiac MR CINE imaging. Medical image computing and computer assisted intervention—MICCAI 2022. Lecture notes in computer science. Springer, Cham, pp 686–696. https://doi.org/10.1007/978-3-031-16446-0_65

    Chapter  Google Scholar 

  43. Yang J, Küstner T, Hu P, Liò P, Qi H (2022) End-to-end deep learning of non-rigid groupwise registration and reconstruction of dynamic MRI. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2022.880186

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qi H, Hajhosseiny R, Cruz G, Kuestner T, Kunze K, Neji R, Botnar R, Prieto C (2021) End-to-end deep learning nonrigid motion-corrected reconstruction for highly accelerated free-breathing coronary MRA. Magn Reson Med 86(4):1983–1996

    Article  PubMed  Google Scholar 

  45. Batchelor PG, Atkinson D, Irarrazaval P, Hill DLG, Hajnal J, Larkman D (2005) Matrix description of general motion correction applied to multishot images. Magn Reson Med 54(5):1273–1280

    Article  CAS  PubMed  Google Scholar 

  46. Atkinson D, Hill DLG, Stoyle PNR, Summers PE, Keevil SF (1997) Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans Med Imaging 16(6):903–910

    Article  CAS  PubMed  Google Scholar 

  47. Atkinson D, Hill DLG, Stoyle PNR, Summers PE, Clare S, Bowtell R, Keevil SF (1999) Automatic compensation of motion artifacts in MRI. Magn Reson Med 41(1):163–170

    Article  CAS  PubMed  Google Scholar 

  48. Lin W, Ladinsky GA, Wehrli FW, Song HK (2007) Image metric-based correction (autofocusing) of motion artifacts in high-resolution trabecular bone imaging. J Magn Reson Imaging 26(1):191–197

    Article  PubMed  Google Scholar 

  49. Loktyushin A, Nickisch H, Pohmann R, Schölkopf B (2013) Blind retrospective motion correction of MR images. Magn Reson Med 70(6):1608–1618

    Article  PubMed  Google Scholar 

  50. Cheng JY, Alley MT, Cunningham CH, Vasanawala SS, Pauly JM, Lustig M (2012) Nonrigid motion correction in 3D using autofocusing with localized linear translations. Magn Reson Med 68(6):1785–1797

    Article  PubMed  PubMed Central  Google Scholar 

  51. Loktyushin A, Nickisch H, Pohmann R, Schölkopf B (2015) Blind multirigid retrospective motion correction of MR images. Magn Reson Med 73(4):1457–1468

    Article  PubMed  Google Scholar 

  52. Roy CW, Heerfordt J, Piccini D, Rossi G, Pavon AG, Schwitter J, Stuber M (2021) Motion compensated whole-heart coronary cardiovascular magnetic resonance angiography using focused navigation (fNAV). J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-021-00717-4

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schmidt JFM, Buehrer M, Boesiger P, Kozerke S (2011) Nonrigid retrospective respiratory motion correction in whole-heart coronary MRA. Magn Reson Med 66(6):1541–1549

    Article  PubMed  Google Scholar 

  54. Odille F, Uribe S, Batchelor PG, Prieto C, Schaeffter T, Atkinson D (2010) Model-based reconstruction for cardiac cine MRI without ECG or breath holding. Magn Reson Med 63(5):1247–1257

    Article  PubMed  Google Scholar 

  55. Vuissoz PA, Odille F, Fernandez B, Lohezic M, Benhadid A, Mandry D, Felblinger J (2012) Free-breathing imaging of the heart using 2D cine-GRICS (generalized reconstruction by inversion of coupled systems) with assessment of ventricular volumes and function. J Magn Reson Imaging 35(2):340–351

    Article  PubMed  Google Scholar 

  56. Cruz G, Atkinson D, Henningsson M, Botnar RM, Prieto C (2017) Highly efficient nonrigid motion-corrected 3D whole-heart coronary vessel wall imaging. Magn Reson Med 77(5):1894–1908

    Article  CAS  PubMed  Google Scholar 

  57. Bustin A, Rashid I, Cruz G, Hajhosseiny R, Correia T, Neji R, Rajani R, Ismail TF, Botnar RM, Prieto C (2020) 3D whole-heart isotropic sub-millimeter resolution coronary magnetic resonance angiography with non-rigid motion-compensated PROST. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-020-00611-5

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rank CM, Heusser T, Buzan MTA, Wetscherek A, Freitag MT, Dinkel J, Kachelriess M (2017) 4D respiratory motion-compensated image reconstruction of free-breathing radial mr data with very high undersampling. Magn Reson Med 77(3):1170–1183

    Article  PubMed  Google Scholar 

  59. Correia T, Ginami G, Cruz G, Neji R, Rashid I, Botnar RM, Prieto C (2018) Optimized respiratory-resolved motion-compensated 3D Cartesian coronary MR angiography. Magn Reson Med 80(6):2618–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Polak D, Splitthoff DN, Clifford B, Lo WC, Huang SSY, Conklin J, Wald LL, Setsompop K, Cauley S (2022) Scout accelerated motion estimation and reduction (SAMER)TZ. Magn Reson Med 87(1):163–178

    Article  CAS  PubMed  Google Scholar 

  61. Huttinga NRF, van den Berg CAT, Luijten PR, Sbrizzi A (2020) MR-MOTUS: model-based non-rigid motion estimation for MR-guided radiotherapy using a reference image and minimal k-space data. Phys Med Biol. https://doi.org/10.1088/1361-6560/ab554a

    Article  PubMed  Google Scholar 

  62. Wang C, Liang Y, Wu Y, Zhao S, Du YP (2020) Correction of out-of-FOV motion artifacts using convolutional neural network. Magn Reson Imaging 71:93–102

    Article  CAS  PubMed  Google Scholar 

  63. Oh G, Lee JE, Ye JC (2021) Unpaired MR motion artifact deep learning using outlier-rejecting bootstrap aggregation. IEEE Trans Med Imaging 40(11):3125–3139

    Article  PubMed  Google Scholar 

  64. Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X (2020) Deep learning in medical image registration: a review. Phys Med Biol. https://doi.org/10.1088/1361-6560/ab843e

    Article  PubMed  PubMed Central  Google Scholar 

  65. Yang X, Kwitt R, Styner M, Niethammer M (2017) Quicksilver: fast predictive image registration—a deep learning approach. Neuroimage 158:378–396

    Article  PubMed  Google Scholar 

  66. Cao X, Yang J, Zhang J, Wang Q, Yap P-T, Shen D (2018) Deformable image registration using a cue-aware deep regression network. IEEE Trans Biomed Eng 65(9):1900–1911

    Article  PubMed  PubMed Central  Google Scholar 

  67. Avants B, Epstein C, Grossman M, Gee J (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41

    Article  CAS  PubMed  Google Scholar 

  68. Viola P, Wells III WM (1997) Alignment by maximization of mutual information. In: IEEE international conference on computer vision, Cambridge, MA, USA. IEEE, pp 16–23

  69. Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, Smagt Pvd, Cremers D, Brox T (2015) FlowNet: learning optical flow with convolutional networks. In: Paper presented at the 2015 IEEE international conference on computer vision (ICCV)

  70. Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T (2017) FlowNet2.0: evolution of optical flow estimation with deep networks. In: Paper presented at the 2017 IEEE conference on computer vision and pattern recognition (CVPR), Honolulu, HI, USA

  71. Sun D, Yang X, Liu M-Y, Kautz J (2018) PWC-Net: CNNs for Optical flow using pyramid, warping, and cost volume. In: Paper presented at the 2018 IEEE/CVF conference on computer vision and pattern recognition

  72. Shan S, Guo X, Yan W, Chang EI-C, Fan Y, Xu Y (2017) Unsupervised end-to-end learning for deformable medical image registration. arXiv:171108608 [csCV]. https://doi.org/10.48550/arXiv.1711.08608

  73. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Medical image computing and computer-assisted intervention—MICCAI 2015. Lecture notes in computer science. Springer, Cham, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  74. Balakrishnan G, Zhao A, Sabuncu MR, Dalca AV, Guttag J (2018) An unsupervised learning model for deformable medical image registration. In Paper presented at the 2018 IEEE/CVF conference on computer vision and pattern recognition

  75. Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV (2019) VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging 38(8):1788–1800

    Article  Google Scholar 

  76. Kim B, Kim DH, Park SH, Kim J, Lee J-G, Ye JC (2021) CycleMorph: cycle consistent unsupervised deformable image registration. Med Image Anal 71:102036

    Article  PubMed  Google Scholar 

  77. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, Kaiser L (2017) Attention is all you need. In: Paper presented at the 31st conference on neural information processing systems (NIPS 2017), Long Beach, CA, USA

  78. Ho J, Jain A, Abbeel P (2020) Denoising diffusion probabilistic models. In: Paper presented at the 34th conference on neural information processing systems (NeurIPS 2020), Vancouver, Canada

  79. Mok TCW, Chung ACS (2022) Affine medical image registration with coarse-to-fine vision transformer. In: Paper presented at the 2022 IEEE/CVF conference on computer vision and pattern recognition (CVPR), New Orleans, LA, USA

  80. Chen J, Frey EC, He Y, Segars WP, Li Y, Du Y (2022) TransMorph: transformer for unsupervised medical image registration. Med Image Anal 82:102615

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kim B, Han I, Ye JC (2022) DiffuseMorph: unsupervised deformable image registration using diffusion model. Computer vision—ECCV 2022 lecture notes in computer science. Springer, Cham, pp 347–364. https://doi.org/10.1007/978-3-031-19821-2_20

    Chapter  Google Scholar 

  82. Kim B, Ye JC (2022) Diffusion deformable model for 4D Temporal medical image generation. Medical image computing and computer assisted intervention—MICCAI 2022. Lecture notes in computer science. Springer, Cham, pp 539–548. https://doi.org/10.1007/978-3-031-16431-6_51

    Chapter  Google Scholar 

  83. Chen P, Chen X, Chen EZ, Yu H, Chen T, Sun S (2020) Anatomy-aware cardiac motion estimation. Machine learning in medical imaging. Lecture notes in computer science. Springer, Cham, pp 150–159. https://doi.org/10.1007/978-3-030-59861-7_16

    Chapter  Google Scholar 

  84. Pan J, Rueckert D, Küstner T, Hammernik K (2021) Efficient image registration network for non-rigid cardiac motion estimation. Machine learning for medical image reconstruction. Lecture notes in computer science. Springer, Cham, pp 14–24. https://doi.org/10.1007/978-3-030-88552-6_2

    Chapter  Google Scholar 

  85. Teed Z, Deng J (2020) RAFT: recurrent all-pairs field transforms for optical flow. Computer vision—ECCV 2020. Lecture notes in computer science. Springer, Cham, pp 402–419. https://doi.org/10.1007/978-3-030-58536-5_2

    Chapter  Google Scholar 

  86. Hammernik K, Pan J, Rueckert D, Kustner T (2021) Motion-guided physics-based learning for cardiac MRI reconstruction. In: Paper presented at the 2021 55th Asilomar conference on signals, systems, and computers

  87. Morales MA, Izquierdo-Garcia D, Aganj I, Kalpathy-Cramer J, Rosen BR, Catana C (2019) Implementation and validation of a three-dimensional cardiac motion estimation network. Radiol Artif Intell 1(4):e180080

    Article  PubMed  PubMed Central  Google Scholar 

  88. Morales MA, van den Boomen M, Nguyen C, Kalpathy-Cramer J, Rosen BR, Stultz CM, Izquierdo-Garcia D, Catana C (2021) DeepStrain: a deep learning workflow for the automated characterization of cardiac mechanics. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.730316

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wang Y, Sun C, Ghadimi S, Auger DC, Croisille P, Viallon M, Mangion K, Berry C, Haggerty CM, Jing L, Fornwalt BK, Cao JJ, Cheng J, Scott AD, Ferreira PF, Oshinski JN, Ennis DB, Bilchick KC, Epstein FH (2023) StrainNet: improved myocardial strain analysis of cine MRI by deep learning from DENSE. Radiol Cardiothorac Imaging. https://doi.org/10.1148/ryct.220196

    Article  PubMed  PubMed Central  Google Scholar 

  90. Huttinga NRF, Bruijnen T, Berg CAT, Sbrizzi A (2020) Nonrigid 3D motion estimation at high temporal resolution from prospectively undersampled k-space data using low-rank MR-MOTUS. Magn Reson Med 85(4):2309–2326

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gillam C, Kustner T, Blu T (2016) 3D motion flow estimation using local all-pass filters. In: Paper presented at the 2016 IEEE 13th international symposium on biomedical imaging (ISBI), Prague, Czech Republic

  92. Aggarwal HK, Mani MP, Jacob M (2019) MoDL: model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging 38(2):394–405

    Article  PubMed  Google Scholar 

  93. Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, Knoll F (2018) Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 79(6):3055–3071

    Article  PubMed  Google Scholar 

  94. Qi H, Fuin N, Cruz G, Pan J, Kuestner T, Bustin A, Botnar RM, Prieto C (2021) Non-rigid respiratory motion estimation of whole-heart coronary MR images using unsupervised deep learning. IEEE Trans Med Imaging 40(1):444–454

    Article  PubMed  Google Scholar 

  95. Munoz C, Qi H, Cruz G, Küstner T, Botnar RM, Prieto C (2022) Self-supervised learning-based diffeomorphic non-rigid motion estimation for fast motion-compensated coronary MR angiography. Magn Reson Imaging 85:10–18

    Article  CAS  PubMed  Google Scholar 

  96. Arsigny V, Commowick O, Pennec X, Ayache N (2006) A log-Euclidean framework for statistics on diffeomorphisms. In: Paper presented at the Medical image computing and computer-assisted intervention—MICCAI 2006. MICCAI 2006. Lecture notes in computer science

  97. Dalca AV, Balakrishnan G, Guttag J, Sabuncu MR (2018) Unsupervised learning for fast probabilistic diffeomorphic registration. Medical image computing and computer assisted intervention—MICCAI 2018. Lecture notes in computer science. Springer, Cham, pp 729–738. https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  98. Miller Z, Johnson KM (2023) Motion compensated self supervised deep learning for highly accelerated 3D ultrashort Echo time pulmonary MRI. Magn Reson Med 89(6):2361–2375

    Article  PubMed  PubMed Central  Google Scholar 

  99. Seegoolam G, Schlemper J, Qin C, Price A, Hajnal J, Rueckert D (2019) Exploiting motion for deep learning reconstruction of extremely-undersampled dynamic MRI. Medical image computing and computer assisted intervention—MICCAI 2019. Lecture notes in computer science. Springer, Cham, pp 704–712. https://doi.org/10.1007/978-3-030-32251-9_77

    Chapter  Google Scholar 

  100. Küstner T, Pan J, Gilliam C, Qi H, Cruz G, Hammernik K, Blu T, Rueckert D, Botnar R, Prieto C, Gatidis S (2022) Self-supervised motion-corrected image reconstruction network for 4D magnetic resonance imaging of the body trunk. APSIPA Trans Signal Inf Process 11 (1).

  101. Haskell MW, Cauley SF, Bilgic B, Hossbach J, Splitthoff DN, Pfeuffer J, Setsompop K, Wald LL (2019) Network accelerated motion estimation and reduction (NAMER): convolutional neural network guided retrospective motion correction using a separable motion model. Magn Reson Med 82(4):1452–1461

    Article  PubMed  PubMed Central  Google Scholar 

  102. Levac B, Jalal A, Tamir JI (2022) Accelerated motion correction for MRI using score-based generative models. arXiv:221100199 [eessIV]. https://doi.org/10.48550/arXiv.2211.00199

  103. Hossbach J, Splitthoff DN, Cauley S, Clifford B, Polak D, Lo WC, Meyer H, Maier A (2022) Deep learning-based motion quantification from k-space for fast model-based magnetic resonance imaging motion correction. Med Phys 50(4):2148–2161

    Article  PubMed  Google Scholar 

  104. Feinler MS, Hahn BN (2023) Retrospective motion correction in gradient echo MRI by explicit motion estimation using deep CNNs. arXiv:230317239 [csCV]. https://doi.org/10.48550/arXiv.2303.17239

  105. Eichhorn H, Hammernik K, Spieker V, Epp SM, Rueckert D, Preibisch C, Schnabel JA (2023) Deep learning-based detection of motion-affected k-space lines for T2*-weighted MRI. arXiv:230310987 [eessIV]. https://doi.org/10.48550/arXiv.2303.10987

  106. Qin C, Bai W, Schlemper J, Petersen SE, Piechnik SK, Neubauer S, Rueckert D (2018) Joint learning of motion estimation and segmentation for cardiac MR image sequences. Medical image computing and computer assisted intervention—MICCAI 2018. Lecture notes in computer science. Springer, Cham, pp 472–480. https://doi.org/10.1007/978-3-030-00934-2_53

    Chapter  Google Scholar 

  107. Sheikhjafari A, Krishnaswamy D, Noga M, Ray N, Punithakumar K (2023) Deep learning based parameterization of diffeomorphic image registration for cardiac image segmentation. IEEE Trans Nanobiosci. https://doi.org/10.1109/tnb.2023.3276867

    Article  Google Scholar 

  108. Qian P, Yang J, Lió P, Hu P, Qi H (2022) Joint group-wise motion estimation and segmentation of cardiac cine MR images using recurrent U-Net. Medical image understanding and analysis. Lecture notes in computer science. Springer, Cham, pp 65–74. https://doi.org/10.1007/978-3-031-12053-4_5

    Chapter  Google Scholar 

  109. Oksuz I, Clough JR, Ruijsink B, Anton EP, Bustin A, Cruz G, Prieto C, King AP, Schnabel JA (2020) Deep learning-based detection and correction of cardiac MR motion artefacts during reconstruction for high-quality segmentation. IEEE Trans Med Imaging 39(12):4001–4010

    Article  PubMed  Google Scholar 

  110. Duffy BA, Zhao L, Sepehrband F, Min J, Wang DJJ, Shi Y, Toga AW, Kim H (2021) Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions. Neuroimage 230:117756

    Article  PubMed  Google Scholar 

  111. Shaw R, Sudre CH, Varsavsky T, Ourselin S, Cardoso MJ (2020) A k-space model of movement artefacts: application to segmentation augmentation and artefact removal. IEEE Trans Med Imaging 39(9):2881–2892

    Article  PubMed  PubMed Central  Google Scholar 

  112. Xu J, Adalsteinsson E (2021) Deformed2Self: self-supervised denoising for dynamic medical imaging. Medical image computing and computer assisted intervention—MICCAI 2021 Lecture notes in computer science. Springer, Cham, pp 25–35. https://doi.org/10.1007/978-3-030-87196-3_3

    Chapter  Google Scholar 

  113. Xu J, Abaci Turk E, Grant PE, Golland P, Adalsteinsson E (2021) STRESS: super-resolution for dynamic fetal MRI using self-supervised learning. Medical image computing and computer assisted intervention—MICCAI 2021. Lecture notes in computer science. Springer, Cham, pp 197–206. https://doi.org/10.1007/978-3-030-87234-2_19

    Chapter  Google Scholar 

  114. Zhang T, Jackson LH, Uus A, Clough JR, Story L, Rutherford MA, Hajnal JV, Deprez M (2019) Self-supervised recurrent neural network for 4D abdominal and in-utero MR imaging. Machine learning for medical image reconstruction. Lecture notes in computer science. Springer, Cham, pp 16–24. https://doi.org/10.1007/978-3-030-33843-5_2

    Chapter  Google Scholar 

  115. Li Y, Wu C, Qi H, Si D, Ding H, Chen H (2022) Motion correction for native myocardial T1 mapping using self-supervised deep learning registration with contrast separation. NMR Biomed. https://doi.org/10.1002/nbm.4775

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zheng Q, Delingette H, Ayache N (2019) Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow. Med Image Anal 56:80–95

    Article  PubMed  Google Scholar 

  117. Freedman JN, Gurney-Champion OJ, Nill S, Shiarli A-M, Bainbridge HE, Mandeville HC, Koh D-M, McDonald F, Kachelrieß M, Oelfke U, Wetscherek A (2021) Rapid 4D-MRI reconstruction using a deep radial convolutional neural network: Dracula. Radiother Oncol 159:209–217

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zeng Q, Fu Y, Tian Z, Lei Y, Zhang Y, Wang T, Mao H, Liu T, Curran WJ, Jani AB, Patel P, Yang X (2020) Label-driven magnetic resonance imaging (MRI)-transrectal ultrasound (TRUS) registration using weakly supervised learning for MRI-guided prostate radiotherapy. Phys Med Biol 65(13):135002

    Article  PubMed  PubMed Central  Google Scholar 

  119. Terpstra ML, Maspero M, d’Agata F, Stemkens B, Intven MPW, Lagendijk JJW, van den Berg CAT, Tijssen RHN (2020) Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy. Phys Med Biol 65(15):155015

    Article  PubMed  Google Scholar 

  120. Terpstra ML, Maspero M, Bruijnen T, Verhoeff JJC, Lagendijk JJW, van den Berg CAT (2021) Real-time 3D motion estimation from undersampled MRI using multi-resolution neural networks. Med Phys 48(11):6597–6613

    Article  PubMed  Google Scholar 

  121. Xiao H, Ni R, Zhi S, Li W, Liu C, Ren G, Teng X, Liu W, Wang W, Zhang Y, Wu H, Lee HFV, Cheung LYA, Chang HCC, Li T, Cai J (2022) A dual-supervised deformation estimation model (DDEM) for constructing ultra-quality 4D-MRI based on a commercial low-quality 4D-MRI for liver cancer radiation therapy. Med Phys 49(5):3159–3170

    Article  PubMed  Google Scholar 

  122. Shao HC, Li T, Dohopolski MJ, Wang J, Cai J, Tan J, Wang K, Zhang Y (2022) Real-time MRI motion estimation through an unsupervised k-space-driven deformable registration network (KS-RegNet). Phys Med Biol 67(13):135012

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (grant no. 82102027, grant no. 82250610232, and grant no. 82302295) and National High-tech Research and Development Program (grant no. SQ2022YFC2400133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Hu or Haikun Qi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Hu, P. & Qi, H. Stop moving: MR motion correction as an opportunity for artificial intelligence. Magn Reson Mater Phy (2024). https://doi.org/10.1007/s10334-023-01144-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10334-023-01144-5

keywords

Navigation