Skip to main content

Deformed2Self: Self-supervised Denoising for Dynamic Medical Imaging

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12902))

Abstract

Image denoising is of great importance for medical imaging system, since it can improve image quality for disease diagnosis and downstream image analyses. In a variety of applications, dynamic imaging techniques are utilized to capture the time-varying features of the subject, where multiple images are acquired for the same subject at different time points. Although signal-to-noise ratio of each time frame is usually limited by the short acquisition time, the correlation among different time frames can be exploited to improve denoising results with shared information across time frames. With the success of neural networks in computer vision, supervised deep learning methods show prominent performance in single-image denoising, which rely on large datasets with clean-vs-noisy image pairs. Recently, several self-supervised deep denoising models have been proposed, achieving promising results without needing the pairwise ground truth of clean images. In the field of multi-image denoising, however, very few works have been done on extracting correlated information from multiple slices for denoising using self-supervised deep learning methods. In this work, we propose Deformed2Self, an end-to-end self-supervised deep learning framework for dynamic imaging denoising. It combines single-image and multi-image denoising to improve image quality and use a spatial transformer network to model motion between different slices. Further, it only requires a single noisy image with a few auxiliary observations at different time frames for training and inference. Evaluations on phantom and in vivo data with different noise statistics show that our method has comparable performance to other state-of-the-art unsupervised or self-supervised denoising methods and outperforms under high noise levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/daviddmc/Deform2Self.

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  2. Batson, J., Royer, L.: Noise2Self: blind denoising by self-supervision. arXiv preprint arXiv:1901.11365 (2019)

  3. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  4. Castillo, R., et al.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys. Med. Biol. 54(7), 1849 (2009)

    Article  Google Scholar 

  5. Chen, H., et al.: Low-dose CT denoising with convolutional neural network. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 143–146. IEEE (2017)

    Google Scholar 

  6. Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3155–3164 (2018)

    Google Scholar 

  7. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  8. Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. Magn. Reson. Med. 34(6), 910–914 (1995)

    Article  Google Scholar 

  9. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. arXiv preprint arXiv:1506.02025 (2015)

  10. Jia, X., Liu, S., Feng, X., Zhang, L.: FOCNet: a fractional optimal control network for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6054–6063 (2019)

    Google Scholar 

  11. Johansson, A., Balter, J.M., Cao, Y.: Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification. Med. Phys. 45(10), 4529–4540 (2018)

    Article  Google Scholar 

  12. Kale, S.C., Chen, X.J., Henkelman, R.M.: Trading off SNR and resolution in MR images. NMR Biomed. Int. J. Devoted Dev. Appl. Magn. Reson. Vivo 22(5), 488–494 (2009)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  14. Krull, A., Buchholz, T.O., Jug, F.: Noise2Void-learning denoising from single noisy images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2019)

    Google Scholar 

  15. Lefkimmiatis, S.: Universal denoising networks: a novel CNN architecture for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3204–3213 (2018)

    Google Scholar 

  16. Lehtinen, J., et al.: Noise2Noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)

  17. Lingala, S.G., Hu, Y., DiBella, E., Jacob, M.: Accelerated dynamic MRI exploiting sparsity and low-rank structure: kt SLR. IEEE Trans. Med. Imaging 30(5), 1042–1054 (2011)

    Article  Google Scholar 

  18. Lukas, S., Feger, S., Rief, M., Zimmermann, E., Dewey, M.: Noise reduction and motion elimination in low-dose 4D myocardial computed tomography perfusion (CTP): preliminary clinical evaluation of the ASTRA4D algorithm. Eur. Radiol. 29(9), 4572–4582 (2019)

    Article  Google Scholar 

  19. Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms. IEEE Trans. Image Process. 21(9), 3952–3966 (2012)

    Article  MathSciNet  Google Scholar 

  20. Malayeri, A.A., Johnson, W.C., Macedo, R., Bathon, J., Lima, J.A., Bluemke, D.A.: Cardiac cine MRI: quantification of the relationship between fast gradient echo and steady-state free precession for determination of myocardial mass and volumes. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 28(1), 60–66 (2008)

    Google Scholar 

  21. Quan, Y., Chen, M., Pang, T., Ji, H.: Self2Self with dropout: learning self-supervised denoising from single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1890–1898 (2020)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Schirrmacher, F., et al.: Temporal and volumetric denoising via quantile sparse image prior. Med. Image Anal. 48, 131–146 (2018)

    Article  Google Scholar 

  24. Sharif, B., Bresler, Y.: Adaptive real-time cardiac MRI using paradise: validation by the physiologically improved NCAT phantom. In: 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1020–1023. IEEE (2007)

    Google Scholar 

  25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  27. Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017)

    Article  Google Scholar 

  28. Xie, D., et al.: Denoising arterial spin labeling perfusion MRI with deep machine learning. Magn. Reson. Imaging 68, 95–105 (2020)

    Article  Google Scholar 

  29. Xu, J., Gong, E., Ouyang, J., Pauly, J., Zaharchuk, G., Han, S.: Ultra-low-dose 18F-FDG brain PET/MR denoising using deep learning and multi-contrast information. In: Medical Imaging 2020: Image Processing, vol. 11313, p. 113131. International Society for Optics and Photonics (2020)

    Google Scholar 

  30. Xu, J., Gong, E., Pauly, J., Zaharchuk, G.: 200x low-dose pet reconstruction using deep learning. arXiv preprint arXiv:1712.04119 (2017)

  31. You, X., Cao, N., Lu, H., Mao, M., Wanga, W.: Denoising of MR images with Rician noise using a wider neural network and noise range division. Magn. Reson. Imaging 64, 154–159 (2019)

    Article  Google Scholar 

  32. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junshen Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 112 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, J., Adalsteinsson, E. (2021). Deformed2Self: Self-supervised Denoising for Dynamic Medical Imaging. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics