Skip to main content

MocNet: Less Motion Artifacts, More Clean MRI

  • Conference paper
  • First Online:
Artificial Intelligence in China

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 854))

  • 1580 Accesses

Abstract

Magnetic Resonance Imaging is a common way of diagnosing related diseases. However, the magnetic resonance images are easily defected by motion artifacts in their acquisition process, which severely affects the clinicians’ diagnosis. To resolve the problem, we propose a motion correction network (MocNet) to correct motion artifacts. The experiments of motion artifacts simulation demonstrate that our MocNet outperforms the comparison methods with a mean PSNR of 34.397 ± 3.155 dB and a mean SSIM of 0.971 ± 0.015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Godenschweger, F., et al.: Motion correction in MRI of the brain. Phys. Med. Biol. 61(5), R32 (2016)

    Article  Google Scholar 

  2. Andre, J.B.: Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations. J. Am. Coll. Radiol. 12(7), 689–695 (2015)

    Article  Google Scholar 

  3. Pipe, J.G.: Motion correction with propeller MRI: application to head motion and free-breathing cardiac imaging. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 42(5), 963–969 (1999)

    Article  Google Scholar 

  4. Thesen, S., Heid, O., Mueller, E., Schad, L.R.: Prospective acquisition correction for head motion with image-based tracking for real-time FMRI. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 44(3), 457–465 (2000)

    Article  Google Scholar 

  5. Van Der Kouwe, A.J.W., Benner, T., Dale, A.M.: Real-time rigid body motion correction and shimming using cloverleaf navigators. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 56(5), 1019–1032 (2006)

    Article  Google Scholar 

  6. Qin, L., Gelderen, P., Zwart, J., Jin, F., Tao, Y., Duyn, J.: Head movement correction for MRI with a single camera. In: Proceedings of the 16th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Toronto, Canada, p. 1467 (2008)

    Google Scholar 

  7. Zaitsev, M., Maclaren, J., Herbst, M.: Motion artifacts in MRI: a complex problem with many partial solutions. J. Magn. Reson. Imaging 42(4), 887–901 (2015)

    Article  Google Scholar 

  8. Atkinson, D., et al.: Automatic compensation of motion artifacts in MRI. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 41(1), 163–170 (1999)

    Article  Google Scholar 

  9. McGee, K.P., Felmlee, J.P., Jack, C.R., Jr., Manduca, A., Riederer, S.J., Ehman, R.L.: Autocorrection of three-dimensional time-of-flight MR angiography of the Circle of Willis. Am. J. Roentgenol. 176(2), 513–518 (2001)

    Article  Google Scholar 

  10. Loktyushin, A., Nickisch, H., Pohmann, R., Schölkopf, B.: Blind retrospective motion correction of MR images. Magn. Reson. Med. 70(6), 1608–1618 (2013)

    Article  Google Scholar 

  11. Bydder, M., Larkman, D.J., Hajnal, J.V.: Detection and elimination of motion artifacts by regeneration of k-space. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 47(4), 677–686 (2002)

    Article  Google Scholar 

  12. Shen, D., Guorong, W., Suk, H.-I.: Deep learning in medical image analysis. Ann. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  13. Lyu, Q., et al.: Cine cardiac MRI motion artifact reduction using a recurrent neural network. IEEE Trans. Med. Imaging 40, 2170–2181 (2021)

    Article  Google Scholar 

  14. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  15. Tamada, D., Kromrey, M.-L., Ichikawa, S., Onishi, H., Motosugi, U.: Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MR imaging of the liver. Magn. Reson. Med. Sci. 19(1), 64 (2020)

    Article  Google Scholar 

  16. Liu, J., Kocak, M., Supanich, M., Deng, J.: Motion artifacts reduction in brain MRI by means of a deep residual network with densely connected multi-resolution blocks (DRN-DCMB). Magn. Reson. Imaging 71, 69–79 (2020)

    Article  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-assisted Intervention, pp. 234–241 (2015)

    Google Scholar 

  18. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  19. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3(1), 47–57 (2016)

    Article  Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Long, L., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (61871239, 62076077) and the Natural Science Foundation of Tianjin (20JCQNJC0125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyang Liu or Hong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, B. et al. (2022). MocNet: Less Motion Artifacts, More Clean MRI. In: Liang, Q., Wang, W., Mu, J., Liu, X., Na, Z. (eds) Artificial Intelligence in China. Lecture Notes in Electrical Engineering, vol 854. Springer, Singapore. https://doi.org/10.1007/978-981-16-9423-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9423-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9422-6

  • Online ISBN: 978-981-16-9423-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics