Skip to main content

Advertisement

Log in

Relative enhanced diffusivity: noise sensitivity, protocol optimization, and the relation to intravoxel incoherent motion

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the relationship between relative enhanced diffusivity (RED) and intravoxel incoherent motion (IVIM), as well as the impact of noise and the choice of intermediate diffusion weighting (b value) on the RED parameter.

Materials and methods

A mathematical derivation was performed to cast RED in terms of the IVIM parameters. Noise analysis and b value optimization was conducted by using Monte Carlo calculations to generate diffusion-weighted imaging data appropriate to breast and liver tissue at three different signal-to-noise ratios.

Results

RED was shown to be approximately linearly proportional to the IVIM parameter f, inversely proportional to D and to follow an inverse exponential decay with respect to D*. The choice of intermediate b value was shown to be important in minimizing the impact of noise on RED and in maximizing its discriminatory power. RED was shown to be essentially a reparameterization of the IVIM estimates for f and D obtained with three b values.

Conclusion

RED imaging in the breast and liver should be performed with intermediate b values of 100 and 50 s/mm2, respectively. Future clinical studies involving RED should also estimate the IVIM parameters f and D using three b values for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guo Y, Cai YQ, Cai ZL, Gao YG, An NY, Ma L, Mahankali S, Gao JH (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178

    Article  PubMed  Google Scholar 

  2. Woodhams R, Matsunaga K, Iwabuchi K, Kan S, Hata H, Kuranami M, Watanabe M, Hayakawa K (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29:644–649

    Article  PubMed  Google Scholar 

  3. Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254:47–66

    Article  PubMed  Google Scholar 

  4. Pickles MD, Gibbs P, Lowry M, Turnbull LW (2006) Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 24:843–847

    Article  PubMed  Google Scholar 

  5. Richard R, Thomassin I, Chapellier M, Scemama A, de Cremoux P, Varna M, Giacchetti S, Espié M, de Kerviler E, de Bazelaire C (2013) Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol 23:2420–2431

    Article  PubMed  Google Scholar 

  6. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Rustin GJ, Taouli B, Choyke PL (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2):102–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Article  PubMed  Google Scholar 

  8. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    Article  PubMed  Google Scholar 

  9. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440

    Article  PubMed  Google Scholar 

  10. Bennett KM, Schmainda KM, Bennet (Tong) R, Rowe DB, Lu H, Hyde JS (2003) Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 50:727–734

    Article  PubMed  Google Scholar 

  11. Luciani A, Vignaud A, Cavet M, Van Nhieu JT, Mallat A, Ruel L, Laurent A, Deux JF, Brugieres P, Rahmouni A (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology 249(3):891–899

    Article  PubMed  Google Scholar 

  12. Le Bihan D (2008) Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology 249:748–752

    Article  PubMed  Google Scholar 

  13. Andreou A, Koh DM, Collins DJ, Blackledge M, Wallace T, Leach MO, Orton MR (2013) Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 23:428–434

    Article  PubMed  CAS  Google Scholar 

  14. Zhang JL, Sigmund EE, Rusinek H, Chandarana H, Storey P, Chen Q, Lee VS (2012) Optimization of b-value sampling for diffusion-weighted imaging of the kidney. Magn Reson Med 67:89–97

    Article  PubMed  Google Scholar 

  15. Lemke A, Stieltjes B, Schad LR, Laun FB (2011) Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 29:766–776

    Article  PubMed  Google Scholar 

  16. Cho GY, Moy L, Zhang JL, Baete S, Lattanzi R, Moccaldi M, Babb JS, Kim S, Sodickson DK, Sigmund EE (2015) Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer. Magn Reson Med 74:1077–1085

    Article  PubMed  Google Scholar 

  17. Suo S, Lin N, Wang H, Zhang L, Wang R, Zhang S, Hua J, Xu J (2014) Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer at 3.0 tesla: comparison of different curve-fitting methods. J Magn Reson Imaging 42(2):362–370

    Article  PubMed  Google Scholar 

  18. Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 196:1351–1361

    Article  PubMed  Google Scholar 

  19. Orton MR, Collins DJ, Koh DM, Leach MO (2014) Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn Reson Med 71:411–420

    Article  PubMed  Google Scholar 

  20. Freiman M, Perez-Rossello JM, Callahan MJ, Voss SD, Ecklund K, Mulkern RV, Warfield SK (2013) Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med Image Anal 17(3):325–336

    Article  PubMed  PubMed Central  Google Scholar 

  21. While PT (2017) A comparative simulation study of Bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI. Magn Reson Med. https://doi.org/10.1002/mrm.26598

    Article  PubMed  Google Scholar 

  22. Teruel JR, Goa PE, Sjøbakk TE, Østlie A, Fjøsne HE, Bathen TF (2015) Relative enhanced diffusivity (RED) as a marker of breast tumor microvasculature. In: Proceedings of the 23rd annual meeting, International Society for Magnetic Resonance in Medicine, Toronto, 30 May – 5 June 2015, Abstract number 0886

  23. Teruel JR, Goa PE, Sjøbakk TE, Østlie A, Fjøsne HE, Bathen TF (2016) A simplified approach to measure the effect of the microvasculature in diffusion-weighted MR imaging applied to breast tumors: preliminary results. Radiology 281(2):373–381

    Article  PubMed  Google Scholar 

  24. While PT, Teruel JR, Vidić I, Bathen TF, Goa PE (2016) Relative enhanced diffusivity in terms of intravoxel incoherent motion. In: Proceedings of the 24th annual meeting, International Society for Magnetic Resonance in Medicine, Singapore, 07–13 May 2016, Abstract number 3044

  25. Patel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B (2010) Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 31:589–600

    Article  PubMed  PubMed Central  Google Scholar 

  26. Taimouri V, Afacan O, Perez-Rossello JM, Callahan MJ, Mulkern RV, Warfield SK, Freiman M (2015) Spatially constrained incoherent motion method improves diffusion-weighted MRI signal decay analysis in the liver and spleen. Med Phys 42(4):1895–1903

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34(6):910–914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dietrich O, Raya JG, Reeder SB, Ingrisch M, Reiser MF, Schoenberg SO (2008) Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magn Reson Imaging 26:754–762

    Article  PubMed  Google Scholar 

  29. Wirestam R, Borg M, Brockstedt S, Lindgren A, Holtås S, Ståhlberg F (2001) Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol 42:123–128

    Article  PubMed  CAS  Google Scholar 

  30. Callot V, Bennett E, Decking UKM, Balaban RS, Wen H (2003) In vivo study of microcirculation in canine myocardium using the IVIM method. Magn Reson Med 50:531–540

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sigmund EE, Cho GY, Kim S, Finn M, Moccaldi M, Jensen JH, Sodickson DK, Goldberg JD, Formenti S, Moy L (2011) Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 65:1437–1447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Burgess AE (1999) The Rose model, revisited. J Opt Soc Am A 16(3):633–646

    Article  CAS  Google Scholar 

  33. Cunningham IA, Shaw R (1999) Signal-to-noise optimization of medical imaging systems. J Opt Soc Am A 16(3):621–632

    Article  Google Scholar 

  34. Ertas G, Onaygil C, Akin Y, Kaya H, Aribal E (2016) Quantitative differentiation of breast lesions at 3T diffusion-weighted imaging (DWI) using the ratio of distributed diffusion coefficient (DDC). J Magn Reson Imaging 44(6):1633–1641

    Article  PubMed  Google Scholar 

  35. Bedair R, Priest AN, Patterson AJ, McLean MA, Graves MJ, Manavaki R, Gill AB, Abeyakoon O, Griffiths JR, Gilbert FJ (2017) Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations. Eur Radiol 27(7):2726–2736

    Article  PubMed  Google Scholar 

  36. Penner AH, Sprinkart AM, Kukuk GM, Gütgemann I, Gieseke J, Schild HH, Willinek WA, Mürtz P (2013) Intravoxel incoherent motion model-based liver lesion characterisation from three b-value diffusion-weighted MRI. Eur Radiol 23:2773–2783

    Article  PubMed  Google Scholar 

  37. Concia M, Sprinkart AM, Penner AH, Brossart P, Gieseke J, Schild HH, Willinek WA, Mürtz P (2014) Diffusion-weighted magnetic resonance imaging of the pancreas: diagnostic benefit from an intravoxel incoherent motion model-based 3 b-value analysis. Investig Radiol 49:93–100

    Article  Google Scholar 

  38. Veraart J, Rajan J, Peeters RR, Leemans A, Sunaert S, Sijbers J (2013) Comprehensive framework for accurate diffusion MRI parameter estimation. Magn Reson Med 70:972–984

    Article  PubMed  Google Scholar 

  39. Cho GY, Moy L, Kim SG, Baete SH, Moccaldi M, Babb JS, Sodickson DK, Sigmund EE (2016) Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors. Eur Radiol 26(8):2547–2558

    Article  PubMed  Google Scholar 

  40. Thoeny HC, De Keyzer F, Vandecaveye V, Chen F, Sun X, Bosmans H, Hermans R, Verbeken EK, Boesch C, Marchal G, Landuyt W, Ni Y (2005) Effect of vascular targeting agent in rat tumor model: dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology 237(2):492–499

    Article  PubMed  Google Scholar 

  41. Iima M, Le Bihan D (2016) Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology 278:13–32

    Article  PubMed  Google Scholar 

  42. Iima M, Yano K, Kataoka M, Umehana M, Murata K, Kanao S, Togashi K, Le Bihan D (2015) Quantitative non-Gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging. Investig Radiol 50:205–211

    Article  Google Scholar 

  43. Cook PA, Bai Y, Nedjati-Gilani S, Seunarine KK, Hall MG, Parker GJ, Alexander DC (2006) Camino: open-source diffusion-MRI reconstruction and processing. In: Proceedings of the 14th annual meeting, International Society for Magnetic Resonance in Medicine, University of Manchester, Manchester, p 2759

  44. Hall MG, Clark CA (2017) Diffusion in hierarchical systems: a simulation study in models of healthy and diseased muscle tissue. Magn Reson Med 78(3):1187–1198

    Article  PubMed  CAS  Google Scholar 

  45. Balls GT, Frank LR (2009) A simulation environment for diffusion weighted MR experiments in complex media. Magn Reson Med 62(3):771–778

    Article  PubMed  Google Scholar 

  46. Baxter GT, Frank LR (2013) A computational model for diffusion weighted imaging of myelinated white matter. Neuroimage 75:204–212

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author contributions

PTW was responsible for project conception and development, theoretical derivations, numerical simulations, statistical analysis, data interpretation and manuscript preparation. JRT was responsible for parameter development, data interpretation and manuscript revision. IV was responsible for data interpretation and manuscript revision. TFB and PEG were responsible for project development, data interpretation and manuscript revision.

Corresponding author

Correspondence to Peter T. While.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

While, P.T., Teruel, J.R., Vidić, I. et al. Relative enhanced diffusivity: noise sensitivity, protocol optimization, and the relation to intravoxel incoherent motion. Magn Reson Mater Phy 31, 425–438 (2018). https://doi.org/10.1007/s10334-017-0660-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-017-0660-x

Keywords

Navigation