Skip to main content

Advertisement

Log in

Modeling risk analysis for rice production due to agro-climate change in Taiwan

  • Article
  • Published:
Paddy and Water Environment Aims and scope Submit manuscript

Abstract

This study proposes a risk analysis model for the rice production due to climate change in terms of agro-climate indices (i.e., cumulative temperature anomaly, cumulative precipitation anomaly, cumulative sunlight anomaly, cumulative radiation anomaly, and E1 Niño). This risk analysis model is developed by incorporating the multivariate Monte Carlo simulation method, multivariate regression equation, and uncertainty analysis method (advanced first-order second-moment, AFOSM). The study area is composed of 15 counties/cities in Taiwan, East Asia. The data set for the model development and applicability contains 27 years of annual rice productions and agro-climate indices in addition to cultivation areas. Through the proposed risk analysis model, it can be seen that the rice production in Taiwan is especially sensitive to temperature, precipitation, and sunlight. Also, on average, improving performance by reducing insufficient rice risk can rise by 80 % when the rice production increases from 3 × 104 to 3 × 105 tons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amien I, Redjekiningrum P, Kartiwa B, Estinigntyas W (1999) Simulated rice yield as affected by interannual climate variability and possible climate change in Java. Clim Res 12:145–152

    Article  Google Scholar 

  • Ayinde OE, Ojehomon VET, Daramola FS, Falaki AA (2013) Evaluation of the effects of climate change on rice production in Niger state. Ethiop J Enviro Stud Manag 6:763–777

    Article  Google Scholar 

  • Chang CH, Yang JC, Tung YK (1997) Incorporate marginal distributions in point estimate methods for uncertainty analysis. J Hydrol Eng 123(3):224–251

    Google Scholar 

  • Chiang JL, Liu TM (2013) Impact of climate change on paddy field irrigation in southern Taiwan. Paddy Water Environ 11(1–4):311–320

    Article  Google Scholar 

  • Chiueh YW, Huang CC, Tan CH (2013) Modeling the rice-climate indices in Taiwan. Clim Chang Econ 4(3):1350012-1-19

    Google Scholar 

  • Chung SO, Nkomozepi T (2012) Uncertainty of paddy irrigation requirement estimated from climate change projections in the Geumho river basin, Korea. Paddy Water Environ 10(3):175–185

    Article  Google Scholar 

  • Du Toit MA, Prinsloo S, Marthinus A (2001) El Niño-southern oscillation effects on maize production in South Africa: a preliminary methodology study. ASA special publication 63. American Society of Agronomy, Madison

    Google Scholar 

  • Easterling WE, Chen X, Hays C, Brandle JR, Zhang H (1996) Improving the validation of model-simulated crop yield response to climate change: an application to the EPIC model. Clim Res 6:263–273

    Article  Google Scholar 

  • Gillig D, McCarl BA (2002) Introduction to computable general equilibrium models (CGE). Department of Agricultural Economics, Texas A & M University. http://ageco.tamu.edu/

  • Iizumi T, Yokozawa M, Nishimori M (2011) Probability evaluation of climate impact on paddy rice productivity in Japan. Clim Chang 107:391–415

    Article  Google Scholar 

  • Khan MA, Ansari R, Ali H, Gul B, Nielsen BL (2009) Panicum turgidum: a sustainable feed alternative for cattle in saline areas. Agric Ecosyst Environ 129:542–546

    Article  Google Scholar 

  • Lee BH, Tung SJ (1998) An investigation on the agrometeorological disasters prevention attitude of the farmers/fisherman in Chiayi area. Chin J Agrometeorol 5(1):49–57

    Google Scholar 

  • Lindquist J, Kropff MJ (1996) Application of an ecophysiological model for irrigated rice (Oryza sativa)-Echinochloa competition. Weed Sci 44:52–56

    CAS  Google Scholar 

  • Liu PL, Der Kiureghian A (1986) Multivariate distribution models with prescribed marginals covariances. Probab Eng Mech 1(2):105–112

    Article  Google Scholar 

  • Masutomi Y, Kiyoshi T, Hideo H, Yuzuru M (2009) Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models. Agric Ecosyst Environ 31:281–291

    Article  Google Scholar 

  • Mays LW (2001) Stormwater collection system design handbook. McGraw-Hill, New York

    Google Scholar 

  • Mendelsohn R, Nordhaus W, Shaw D (1994) The impact of global warming on agriculture: a Ricardian analysis. Am Econ Rev 84(4):753–771

    Google Scholar 

  • Nataf A (1962) Determination des distributions don’t les marges sontdonnees. Comptes Rendus de l’Académie des sciences 225:42–43

    Google Scholar 

  • Nordhaus W, Yang Z (1996) A regional dynamic general-equilibrium model of alternative climate change strategies. Am Econ Rev 86(4):741–765

    Google Scholar 

  • Paik Y (2008) Analytical derivation of reservoir routing and hydrological risk evaluation of detention basins. J Hydrol 352:191–201

  • Sadeghifar M, Sharafi Z, Safe M (2013) Assessing the effect of sample size on the power of multivariate multiple regression by using Monte Carlo simulation. World Sci J 1(15):175–180

    Google Scholar 

  • Shahid S (2011) Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh. Clim Chang 105(3–4):627–645

    Google Scholar 

  • Tao F, Zhang Z, Liu J, Yokozawa M (2009) Modelling the impact of weather and climate variability on crop productivity over a large area: a new super-ensemble-based probability projection. Agric For Meteorology 149:1266–1278

    Article  Google Scholar 

  • Tung YK, Mays LW (1981) Risk model for flood levee design. Water Resour Res 17(4):833–841

  • Tung YK, Yen BC (2005) Hydrosystems engineering uncertainty analysis. ASCE Press, New York

    Google Scholar 

  • Van Lettersum MK, Donatelli M (2003) Modeling cropping systems: science, software and applications. Eur J Agron 16:309–332

    Google Scholar 

  • White JW, Hoogenboom G, Kimball BA, Wall GW (2011) Methodologies for simulating impacts of climate change on crop production. Field Crops Res 124:357–368

    Article  Google Scholar 

  • World Meteorology Organization (WMO) (1966) Guide to climatological practices, WMO No.100. WMO, Geneva

    Google Scholar 

  • WRMA (2010) Weather indexed insurance for rain on tomato crop in California. http://www.wrma.org/pdf/WeatherIndexedInsuranceTomatoes.pdf. Accessed 12 Nov 2013

  • Wu SJ, Tung YK, Yang JC (2006) Stochastic generation of hourly rainstorm events. Stoch Environ Res Risk Assess 21(2):1436–3240

    Article  Google Scholar 

  • Yapha H, Wong KC (2013) Organic rice farming system in Taiwan: a review of technical and economic aspects. 2nd international conference on environment. Agriculture and Food Sciences, Kuala Lumpur, 6–7 May 2013, pp 94–96

  • Yates D, Strzepek K (1998) Modeling the Nile Basin under climate change. J Hydrol Eng 3(2):98–108

    Article  Google Scholar 

  • Zhai F, Lin T, Byambadorj E (2009) A general equilibrium analysis of the impact of climate change on agriculture in the People’s Republic of China. Asian Dev Rev 26(1):206–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiang-Jen Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SJ., Chiueh, YW., Lien, HC. et al. Modeling risk analysis for rice production due to agro-climate change in Taiwan. Paddy Water Environ 13, 391–404 (2015). https://doi.org/10.1007/s10333-014-0455-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10333-014-0455-x

Keywords

Navigation