Skip to main content

Advertisement

Log in

Construction of a system for exploring mitotic homologous recombination in the genome of Pyricularia oryzae

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

To investigate mitotic homologous recombination (HR) in Pyricularia oryzae, we created an HR detection system. The system consists of two non-functional enhanced yellow fluorescent protein (YFP) and blasticidin S deaminase (BSD) fusion genes (YFP::BSD). If mitotic HR occurs between the two non-functional genes in the genome, restoration of the functional YFP::BSD gene can be expected. The expression of the functional YFP::BSD gene can be detected by both YFP fluorescence and resistance against BS. When the P. oryzae genome was transformed simultaneously with two non-functional genes, all six lines of transformants with both genes had some portion of their hyphae exhibiting YFP fluorescence and BS resistance during growth. Up to ca. 10 % of conidia harvested from the mycelium of each of the six lines had YFP fluorescence, suggesting that HR consistently occurs during mycelium growth. To determine whether and how the HR-mediated phenotypic changes occurred at the DNA level, we analyzed the genomic DNA of BS-resistant mycelia by PCR-RFLP and sequencing and were able to confirm the existence of a restored functional YFP::BSD gene and a non-functional recombinant gene. Collectively, these findings demonstrate that we established a successful HR detection system for P. oryzae, which can be used for other plant pathogens, and that mitotic HR actually occurs in P. oryzae and constitute the first experimental evidence for mitotic HR in a fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen SL, Sekelsky J (2010) Meiotic versus mitotic recombination: two different routes for double-strand break repair: the different functions of meiotic versus mitotic DSB repair are reflected in different pathway usage and different outcomes. Bioessays 32:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol 90:109–116

    Article  PubMed  CAS  Google Scholar 

  • Bishop AJR, Schiestl RH (2000) Homologous recombination as a mechanism for genome rearrangements: environmental and genetic effects. Hum Mol Genet 9:2427–2434

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630

    PubMed  CAS  Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2045

    PubMed  CAS  Google Scholar 

  • Chuma I, Hotta Y, Tosa Y (2011a) Instability of subtelomeric regions during meiosis in Magnaporthe oryzae. J Gen Plant Pathol 77:317–325

    Article  Google Scholar 

  • Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y (2011b) Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 7:e1002147

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Jia Y, Correll J, Wang X, Wang Y (2010) Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Fungal Genet Biol 47:973–980

    Article  PubMed  CAS  Google Scholar 

  • De Wit PJGM, Mehrabi R, van den Burg HA, Stergiopoulos I (2009) Fungal effector proteins: past, present and future. Mol Plant Pathol 10:735–747

    Article  PubMed  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  PubMed  CAS  Google Scholar 

  • Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci USA 104:11772–11777

    Article  PubMed  CAS  Google Scholar 

  • Elegado E, Iwasai A, Sales M, Ishii C, Tomita F, Sone T (2006) Oxidative stress induces high transcription of Rhm52 and Rhm54, novel genes identified as being involved in recombinational repair in Magnaporthe grisea. J Gen Plant Pathol 72:16–19

    Article  CAS  Google Scholar 

  • Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Hanin M, Paszkowski J (2003) Plant genome modification by homologous recombination. Curr Opin Plant Biol 6:157–162

    Article  PubMed  CAS  Google Scholar 

  • Inbar O, Kupiec M (1999) Homology search and choice of homologous partner during mitotic recombination. Mol Cell Biol 19:4134–4142

    PubMed  CAS  Google Scholar 

  • Izawa M, Takekawa O, Arie T, Teraoka T, Yoshida M, Kimura M, Kamakura T (2009) Inhibition of histone deacetylase causes reduction of appressorium formation in the rice blast fungus Magnaporthe oryzae. J Gen Appl Microbiol 55:489–498

    Article  PubMed  CAS  Google Scholar 

  • Kamakura T, Yamaguchi S, Saitoh K, Teraoka T, Yamaguchi I (2002) A novel gene, CBP1, encoding a putative extracellular chitin-binding protein, may play an important role in the hydrophobic surface sensing of Magnaporthe grisea during appressorium differentiation. Mol Plant Miocrobe Interact 15:437–444

    Article  CAS  Google Scholar 

  • Kang S, Lebrun MH, Farrall L, Valent B (2001) Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant Microbe Interact 14:671–674

    Article  PubMed  CAS  Google Scholar 

  • Khang CH, Park SY, Lee YH, Valent B, Kang S (2008) Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. Mol Plant Microbe Interact 21:658–670

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Kamakura T, Tao QZ, Kaneko I, Yamaguchi I (1994) Cloning of the blasticidin S deaminase gene (BSD) from Aspergillus terreus and its use as a selectable marker for Schizosaccharomyces pombe and Pyricularia oryzae. Mol Gen Genet 242:121–129

    Article  PubMed  CAS  Google Scholar 

  • Kiyosawa S (1982) Genetics and epidemiological modeling of breakdown of plant disease resistance. Annu Rev Phytopathol 20:93–117

    Article  Google Scholar 

  • Leach JE, Cruz CMV, Bari J, Leung H (2001) Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu Rev Phytopathol 39:187–224

    Article  PubMed  CAS  Google Scholar 

  • Lee PS, Greenwell PW, Dominska M, Gawel M, Hamilton M, Petes TD (2009) A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae. PLoS Genet 5:e1000410

    Article  PubMed  Google Scholar 

  • Miki S, Matsui K, Kito H, Otsuka K, Ashizawa T, Yasuda N, Fukiya S, Sato J, Hirayae K, Fujita Y, Nakajima T, Tomita F, Sone T (2009) Molecular cloning and characterization of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae. Mol Plant Pathol 10:361–374

    Article  PubMed  CAS  Google Scholar 

  • Ochiai-Fukuda T, Takahashi-Ando N, Ohsato S, Igawa T, Kadokura K, Hamamoto H, Nakasako M, Kudo T, Shibata T, Yamaguchi I, Kimura M (2005) A fluorescent antibiotic resistance marker for rapid production of transgenic rice plants. J Biotechnol 122:521–527

    Article  PubMed  Google Scholar 

  • Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019–2032

    PubMed  CAS  Google Scholar 

  • Pâques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  Google Scholar 

  • Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci USA 93:5055–5060

    Article  PubMed  CAS  Google Scholar 

  • Swoboda P, Gal S, Hohn B, Puchta H (1994) Intrachromosomal homologous recombination in whole plants. EMBO J 13:484–489

    PubMed  CAS  Google Scholar 

  • Takahashi M, Ashizawa T, Hirayae K, Moriwaki J, Sone T, Sonoda R, Noguchi MT, Nagashima S, Ishikawa K, Arai M (2010) One of two major paralogs of AVR-Pita1 is functional in Japanese rice blast isolates. Phytopathology 100:612–618

    Article  PubMed  CAS  Google Scholar 

  • Tokai T, Koshino H, Kawasaki T, Igawa T, Suzuki Y, Sato M, Fujimura M, Eizuka T, Watanabe H, Kitahara T, Ohta K, Shibata T, Kudo T, Inoue H, Yamaguchi I, Kimura M (2005) Screening of putative oxygenase genes in the Fusarium graminearum genome sequence database for their role in trichothecene biosynthesis. FEMS Michrobiol Lett 251:193–201

    Article  CAS  Google Scholar 

  • Watanabe S, Kumakura K, Izawa N, Nagayama K, Mitachi T, Kanamori M, Teraoka T, Arie T (2007) Mode of action of Trichoderma asperellum SKT-1, a biocontrol agent against Gibberella fujikuroi. J Pestic Sci 32:222–228

    Article  CAS  Google Scholar 

  • Yang Y, Gabriel DW (1995) Intragenic recombination of a single plant pathogen gene provides a mechanism for the evolution of new host specificities. J Bacteriol 177:4963–4968

    PubMed  CAS  Google Scholar 

  • Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591

    Article  PubMed  CAS  Google Scholar 

  • Zhou E, Jia Y, Singh P, Correll JC, Lee FN (2007) Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet Biol 44:1024–1034

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Takehiko Shibata at the RIKEN Advanced Science Institute for valuable suggestions. This work was supported in part by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Fellows grant number 24.11224 and JSPS Grant-in-Aid for Scientific Research (C) grant number 24580070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Kuwata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arazoe, T., Ohsato, S., Arie, T. et al. Construction of a system for exploring mitotic homologous recombination in the genome of Pyricularia oryzae . J Gen Plant Pathol 79, 422–430 (2013). https://doi.org/10.1007/s10327-013-0474-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-013-0474-2

Keywords

Navigation