Skip to main content
Log in

Instability of subtelomeric regions during meiosis in Magnaporthe oryzae

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

An Erratum to this article was published on 07 February 2012

Abstract

Dynamics of chromosomal ends during meiosis was examined using a tetrad F1 population derived from a cross between Setaria and Triticum isolates of Magnaporthe oryzae. Telomeric fragments were liberated by six restriction enzymes and detected with a telomere probe. Each fragment was assigned to one of the 14 chromosomal ends using chromosome-specific markers. Size shifts and non-Mendelian segregation (4:0, 3:1, 1:3, and 0:4) were frequently observed in these telomeric fragments and were considered to be caused by deletion, insertion, point mutation, and gene conversion. Similar results were obtained in another tetrad F1 population derived from a cross between Oryza and Triticum isolates. These results suggest that subtelomeric regions are unstable during meiosis and are prone to various rearrangements including gene conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem J-L, Lebrun M-H (2004) A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistance rice. Plant Cell 16:2499–2513

    Article  PubMed  Google Scholar 

  • Chen J-M, Cooper DN, Chuzhanova N, Férec C, Patrinos GP (2007a) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762–775

    Article  PubMed  CAS  Google Scholar 

  • Chen QH, Wang YC, Li AN, Zhang ZG, Zheng XB (2007b) Molecular mapping of two cultivar-specific avirulence genes in the rice blast fungus Magnaporthe grisea. Mol Genet Genomics 277:139–148

    Article  PubMed  CAS  Google Scholar 

  • Chuma I, Zhan S-W, Asano S, Nga NTT, Vy TTP, Shirai M, Ibaragi K, Tosa Y (2010) PWT1, an avirulence gene of Magnaporthe oryzae tightly linked to the rDNA locus, is recognized by two staple crops, common wheat and barley. Phytopathology 100:436–443

    Article  PubMed  CAS  Google Scholar 

  • Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y (2011) Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 7:e1002147

    Article  PubMed  CAS  Google Scholar 

  • Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693

    Article  PubMed  CAS  Google Scholar 

  • Dioh W, Tharreau D, Notteghem JL, Orbach M, Lebrun M-H (2000) Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. Mol Plant Microbe Interact 13:217–227

    Article  PubMed  CAS  Google Scholar 

  • Farman ML (2007) Telomeres in the rice blast fungus Magnaporthe oryzae: the world of the end as we know it. FEMS Microbiol Lett 273:125–132

    Article  PubMed  CAS  Google Scholar 

  • Farman ML, Leong SA (1995) Genetic and physical mapping of telomeres in the rice blast fungus, Magnaporthe grisea. Genetics 140:479–492

    PubMed  CAS  Google Scholar 

  • Hirata K, Kusaba M, Chuma I, Osue J, Nakayashiki H, Mayama S, Tosa Y (2007) Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycol Res 111:799–808

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Yamamoto M, Yamaguchi-Ozaki T, Kadouchi H, Iwamoto Y, Nakayashiki H, Tosa Y, Mayama S, Mori N (2000) Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusoideae and Zingiberaceae plants. J Gen Plant Pathol 66:30–47

    Article  CAS  Google Scholar 

  • Kiyosawa S (1982) Genetics and epidemiological modeling of breakdown of plant disease resistance. Annu Rev Phytopathol 20:93–117

    Article  Google Scholar 

  • Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22:411–420

    Article  PubMed  CAS  Google Scholar 

  • Luo C-X, Yin L-F, Koyanagi S, Farman ML, Kusaba M, Yaegashi H (2005) Genetic mapping and chromosomal assignment of Magnaporthe oryzae avirulence genes AvrPik, AvrPiz, and AvrPiz-t controlling cultivar specificity on rice. Phytopathology 95:640–647

    Article  PubMed  CAS  Google Scholar 

  • Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM (2008) High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454:479–485

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Perez E, Colaiácovo MP (2009) Distribution of meiotic recombination events: talking to your neighbors. Curr Opin Genet Dev 19:105–112

    Article  PubMed  CAS  Google Scholar 

  • Miki S, Matsui K, Kito H, Otsuka K, Ashizawa T, Yasuda N, Fukiya S, Sato J, Hirayae K, Fujita Y, Nakajima T, Tomita F, Sone T (2009) Molecular cloning and characterization of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae. Mol Plant Pathol 10:361–374

    Article  PubMed  CAS  Google Scholar 

  • Murakami J, Tosa Y, Kataoka T, Tomita R, Kawasaki J, Chuma I, Sesumi Y, Kusaba M, Nakayashiki H, Mayama S (2000) Analysis of host species specificity of Magnaporthe grisea toward wheat using a genetic cross between isolates from wheat and foxtail millet. Phytopathology 90:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Nakayashiki H, Kiyotomi K, Tosa Y, Mayama S (1999) Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi. Genetics 153:693–703

    PubMed  CAS  Google Scholar 

  • Nakayashiki H, Matsuo H, Chuma I, Ikeda K, Betsuyaku S, Kusaba M, Tosa Y, Mayama S (2001) Pyret, a Ty3/gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. Nucleic Acids Res 29:4106–4113

    Article  PubMed  CAS  Google Scholar 

  • Ndindeng SA, Miki S, Abe A, Asano K, Sone T (2010) EGFP-Rhm51 foci enable the visualization and enumeration of DNA double-strand breaks in Magnaporthe oryzae. J Gen Plant Pathol 76:377–381

    Article  CAS  Google Scholar 

  • Nitta N, Farman ML, Leong SA (1997) Genome organization of Magnaporthe grisea: integration of genetic maps, clustering of transposable elements and identification of genome duplications and rearrangements. Theor Appl Genet 95:20–32

    Article  CAS  Google Scholar 

  • Noguchi MT, Yasuda N, Fujita Y (2006) Evidence of genetic exchange by parasexual recombination and genetic analysis of pathogenicity and mating type of parasexual recombinants in rice blast fungus, Magnaporthe oryzae. Phytopathology 96:746–750

    Article  PubMed  CAS  Google Scholar 

  • Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019–2032

    Article  PubMed  CAS  Google Scholar 

  • Rehmeyer C, Li W, Kusaba M, Kim Y-S, Brown D, Staben C, Dean R, Farman M (2006) Organization of chromosome ends in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Res 34:4685–4701

    Article  PubMed  CAS  Google Scholar 

  • Silué D, Notteghem JL, Tharreau D (1992) Evidence of a gene-for-gene relationship in the Oryza sativaMagnaporthe grisea pathosystem. Phytopathology 82:577–580

    Article  Google Scholar 

  • Tosa Y, Hirata K, Tamba H, Nakagawa S, Chuma I, Isobe C, Osue J, Urashima AS, Don LD, Kusaba M, Nakayashiki H, Tanaka A, Tani T, Mori N, Mayama S (2004) Genetic constitution and pathogenicity of Lolium isolates of Magnaporthe oryzae in comparison with host species-specific pathotypes of the blast fungus. Phytopathology 94:454–462

    Article  PubMed  CAS  Google Scholar 

  • Tosa Y, Tamba H, Tanaka K, Mayama S (2006) Genetic analysis of host species specificity of Magnaporthe oryzae isolates from rice and wheat. Phytopathology 96:480–484

    Article  PubMed  CAS  Google Scholar 

  • Valent B, Chumley FG (1994) Avirulence genes and mechanisms of genetic instability in the rice blast fungus. In: Zeigler RS, Leong SA, Teng PS (eds) The rice blast disease. International Rice Research Institute, Los Banos and Commonwealth Agricultural Bureaux, Cambridge, pp 111–134

  • Yasuda N, Tsujimoto-Noguchi M, Fujita Y (2006) Partial mapping of avirulence genes AVR-Pii and AVR-Pia in the rice blast fungus Magnaporthe oryzae. Can J Plant Pathol 28:494–498

    Article  CAS  Google Scholar 

  • Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591

    Article  PubMed  CAS  Google Scholar 

  • Zeigler RS, Scott RP, Leung H, Bordeos AA, Kumar J, Nelson RJ (1997) Evidence of parasexual exchange of DNA in the rice blast fungus challenges its exclusive clonality. Phytopathology 87:284–294

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Zhang G, Lin F, Wang Z, Jin G, Yang L, Wang Y, Chen X, Xu Z, Zhao X, Wang H, Lu J, Lu G, Wu W (2008) Development of microsatellite markers and construction of genetic map in rice blast pathogen Magnaporthe grisea. Fungal Genet Biol 45:1340–1347

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. S.A. Leong, University of Wisconsin-Madison, USA, and Dr. M. Farman, University of Kentucky, USA, for providing the chromosome-specific markers, and Dr. K. Sato, Okayama University, Japan, and Dr. Y. Kaneko, Osaka University, Japan, for valuable suggestions for segregation analyses. Special thanks are due to Dr. H. Kato, former professor at Kobe University, and Dr. S. Mayama, emeritus professor at Kobe University, for valuable suggestions, constant support, and encouragement throughout this study. This work was supported by Japan Society for the Promotion of Science Grants 14206006, 16380036, 18380034 and 20248005 and Kobe University Special Fund for Supporting Women Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Tosa.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10327-011-0358-2.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1 (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuma, I., Hotta, Y. & Tosa, Y. Instability of subtelomeric regions during meiosis in Magnaporthe oryzae . J Gen Plant Pathol 77, 317–325 (2011). https://doi.org/10.1007/s10327-011-0338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-011-0338-6

Keywords

Navigation